Statics - TAM 211

Lecture 8
September 28, 2018

Announcements

\square No classes September 29 - October 7 for National Day Holiday
Saturday Sept 29 make-up class cancelled to accommodate for Quiz 1
Sunday Sept 30 make-up class cancelled to accommodate for Quiz 2
\square Enjoy your vacation!
\square Upcoming deadlines:

- Friday (today)
- Written Assignment 2
- Tuesday (10/9)
- Prairie Learn HW3
- Friday (10/12)
- Written Assignment 3

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis (using Scalar Triple Product)
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force

Scalar Formulation: $M_{O}=F d \quad$ Scalar Formulation: $M_{O}=F d$,

Direction: Moment about point $O \overrightarrow{M_{O}}$ is perpendicular to the plane that contains the force $\overrightarrow{\boldsymbol{F}}$ and its moment arm \vec{d}. The right-hand rule is used to define the sense.

Magnitude: In a 2D case (where \vec{F} is perpendicular to $\overrightarrow{\boldsymbol{d}}$), the magnitude of the moment about point O is $M_{O}=F d$

Recap: Moment of a force

Magnitude:
recall $|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta$
$\left.M_{O}=\left|\overrightarrow{M_{O}}\right|=|\vec{r}||\vec{F}| \sin \theta=F(r \sin \theta)=F d\right) \begin{aligned} & d \text { is the per } \\ & \text { from } O \text { to }\end{aligned}$

Why should $M_{0}<48 \mathrm{kNm}$?

$$
\vec{M}_{0}=\vec{r}_{O \Delta} \times \vec{F}
$$

$$
\begin{aligned}
M_{0} & =F d^{\prime} \\
& d^{\prime}<8 m
\end{aligned}
$$

Moment of a force about a specified axis

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the y-axis.

Recall: the projected component of a vector, \vec{A}, along the direction of another, $\overrightarrow{\boldsymbol{B}}$, can be determined using the dot product.

$$
\operatorname{Proj}(\stackrel{\rightharpoonup}{\boldsymbol{A}}, \stackrel{\rightharpoonup}{\boldsymbol{B}})=\left(\stackrel{\rightharpoonup}{\boldsymbol{A}} \cdot \stackrel{\rightharpoonup}{\boldsymbol{u}_{\boldsymbol{B}}}\right) \stackrel{\rightharpoonup}{\boldsymbol{u}_{\boldsymbol{B}}}
$$

Moment of a force about a specified axis (Scalar Triple Product)

The magnitude of the projected moment about any generic axis a can be computed using the scalar triple product:

$$
\begin{aligned}
\left|\overrightarrow{\boldsymbol{M}_{\boldsymbol{a}}}\right| & =\stackrel{\rightharpoonup}{\boldsymbol{M}_{\boldsymbol{o}}} \cdot \overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}} \\
& =(\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}) \cdot \overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}} \\
& =\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| \begin{array}{l}
\text { Scalur } \\
\text { Triple } \\
\text { Product }
\end{array}
\end{aligned}
$$

The direction of the projected moment about any generic axis a can be defined using :

$$
\stackrel{\rightharpoonup}{M_{a}}=\left|\stackrel{\rightharpoonup}{M_{a}}\right| \stackrel{\rightharpoonup}{\boldsymbol{u}_{a}}
$$

where $\overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}}$ is the unit vector along axis a

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the y-axis.
$F_{\text {ind }}:\left|\vec{M}_{y}\right|$

$$
\begin{aligned}
& m_{y}=(\vec{r} \times \vec{F}) \cdot \vec{u}_{y} \\
& \vec{F}=F \hat{k} \\
& \vec{r}=-x \hat{\imath}+y \hat{\jmath} \\
& \vec{u}_{y}=\hat{\jmath} \\
& \vec{m}_{0}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-x & y & 0 \\
0 & 0 & F
\end{array}\right|=y F \hat{\imath}-(-x F) \hat{\jmath}+0 \hat{k} \\
& M_{y}=(\vec{r} \times \vec{F}) \cdot \vec{u}_{y}=(y F \hat{\imath}+\times F \hat{j}) \cdot \hat{\jmath}\left[\begin{array}{c}
\text { dot product } \\
\text { projection }]
\end{array}\right. \\
& \text { Alternatively, } \\
& m_{y}=x F N_{m} \text { magnitude } \\
& \text { use Secular Triple Product } \\
& m_{y}=\left|\begin{array}{ccc}
0 & 1 & 0 \\
-x & y & 0 \\
0 & 0 & F
\end{array}\right|=
\end{aligned}
$$

A force is applied to the tool as shown. Find the magnitude of the moment of this force about the x axis.

Find: M_{x}

$$
\begin{aligned}
& M_{x}=\left(\vec{r}_{A_{0}} \times \vec{F}\right) \cdot \vec{U}_{x} \\
& M_{x}=\left|\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.3 & 0.85 \\
-100 & 100 & 141.4
\end{array}\right|
\end{aligned}
$$

$$
\uparrow \hat{\imath}
$$

Note:

$$
\stackrel{\rightharpoonup}{\risingdotseq}=200 \mathrm{~N}\left[\cos 120^{\circ}, \cos 60^{\circ}, \cos 45^{\circ}\right]
$$

