Statics - TAM 211

Lecture 9
October 8, 2018

Announcements

\square Upcoming deadlines:

- Tuesday (10/9)
- Prairie Learn HW3
- Friday (10/12)
- Written Assignment 3

[^0]

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force about a specified

 axisA force is applied to the tool as shown. Find the magnitude of the moment of this force about the y-axis.

Recall: the projected component of a vector, \vec{A}, along the direction of another, $\overrightarrow{\boldsymbol{B}}$, can be determined using the dot product.

$$
\operatorname{Proj}(\vec{A}, \vec{B})=\left(\vec{A} \cdot \overrightarrow{\boldsymbol{u}_{B}}\right) \overrightarrow{\boldsymbol{u}_{\boldsymbol{B}}}
$$

Recap: Moment of a force about a specified axis (Scalar Triple Product)

The magnitude of the projected moment about any generic axis a can be computed using the scalar triple product:

$$
\begin{aligned}
\left|\overrightarrow{\boldsymbol{M}_{\boldsymbol{a}}}\right| & =\overrightarrow{\boldsymbol{M}_{\boldsymbol{o}}} \cdot \overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}} \\
& =\overline{\boldsymbol{u}_{\boldsymbol{a}}} \cdot(\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}) \\
& =\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
\end{aligned}
$$

The direction of the projected moment about any generic axis a can be defined using :

$$
\overrightarrow{M_{a}}=\left|\overrightarrow{M_{a}}\right| \overrightarrow{u_{a}}
$$

where $\overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}}$ is the unit vector along axis a

Moment of a couple

Couple: two parallel forces that have same magnitude, but opposite directions, and are separated by a perpendicular distance d.

- Resultant force is zero.
- Couple produces actual rotation, or if no movement is possible, tendency of rotation in a specified direction.

Moment produced by a couple is called couple moment.
Sum of moments of both couple forces about any arbitrary point:

Couple moment is a free vector, i.e. is independent of
 the choice of O !

Equivalent couples

A torque or moment of $12 \mathrm{~N} \cdot \mathrm{~m}$ is required to rotate the wheel.
Would F be greater or less than 30 N?

Resultant Couple Moment

Since couple moments are vectors, their resultant is due to vector addition:

Two couples act on the beam with the geometry shown and $d=4 \mathrm{ft}$. Find the resultant couple

[^0]: https:/ /fr.wikipedia.org/wiki/Couple_(physique)

