Statics - TAM 211

Lecture 9
October 8, 2018

Announcements

\square Upcoming deadlines:

- Tuesday (10/9)
- Prairie Learn HW3
- Friday (10/12)
- Written Assignment 3

[^0]

Chapter 4: Force System Resultants

Goals and Objectives

- Discuss the concept of the moment of a force and show how to calculate it in two and three dimensions
- How to find the moment about a specified axis
- Define the moment of a couple
- Finding equivalence force and moment systems
- Reduction of distributed loading

Recap: Moment of a force about a specified

 axisA force is applied to the tool as shown. Find the magnitude of the moment of this force about the y-axis.

Recall: the projected component of a vector, \vec{A}, along the direction of another, $\overrightarrow{\boldsymbol{B}}$, can be determined using the dot product.

$$
\operatorname{Proj}(\vec{A}, \vec{B})=\left(\vec{A} \cdot \overrightarrow{\boldsymbol{u}_{B}}\right) \overrightarrow{\boldsymbol{u}_{\boldsymbol{B}}}
$$

Recap: Moment of a force about a specified axis (Scalar Triple Product)

The magnitude of the projected moment about any generic axis a can be computed using the scalar triple product:

$$
\begin{aligned}
\left|\overrightarrow{\boldsymbol{M}_{\boldsymbol{a}}}\right| & =\overrightarrow{\boldsymbol{M}_{\boldsymbol{o}}} \cdot \overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}} \\
& =\overline{\boldsymbol{u}_{\boldsymbol{a}}} \cdot(\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}}) \\
& =\left|\begin{array}{ccc}
u_{a_{x}} & u_{a_{y}} & u_{a_{z}} \\
r_{x} & r_{y} & r_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
\end{aligned}
$$

The direction of the projected moment about any generic axis a can be defined using :

$$
\overrightarrow{M_{a}}=\left|\overrightarrow{M_{a}}\right| \overrightarrow{u_{a}}
$$

where $\overrightarrow{\boldsymbol{u}_{\boldsymbol{a}}}$ is the unit vector along axis a

Equivalent couples

Would F be greater or less than 30 N ?

$$
\vec{M}_{1}=\vec{r}_{1} \times \vec{F}_{1}
$$

$$
\begin{aligned}
& =r_{1} \times r_{1} \\
& =0.4 \mathrm{~m} \hat{\jmath} \times 30 \mathrm{~N} \hat{e} \text { "hat" } \text { symbol }
\end{aligned}
$$

$$
=12 \mathrm{Nm}(-\hat{k})
$$

\uparrow since $+z$ is counterclock wise $c c w$
i>Clicker
\boldsymbol{F}_{1} and \boldsymbol{F}_{2} form a couple. The moment of the couple is given by:
A) $\boldsymbol{r}_{1} \times \boldsymbol{F}_{1}$

Both B) $r_{2} \times F_{1}$
correct C) $r_{1} \times F_{2}$
D) $\boldsymbol{r}_{2} \times \boldsymbol{F}_{2}$

Use right hand rule to determine direction of rotation.
Point figures in direction of \vec{r}, then curlfingers
 in direction of \vec{F}. Your
thumb points in direction of moment vector \vec{M}.
Important point: Moments are always defined as $\vec{M}=\vec{r} \times \vec{F}$. If incorrectly write, $\vec{M}=\vec{F} \times \vec{r}$, then \vec{M} points in wring direction!

Find the moment about the support at $O ? \mathrm{~F}=125 \mathrm{~N}, \mathrm{P}=100 \mathrm{~N}$.

$$
\text { about the } x \text {-axis }
$$

Find the moment about the support at $O_{i} F=125 \mathrm{~N}, \mathrm{P}=100 \mathrm{~N}$.

A couple of points that were brought up by students after class.

1) The two forces \mathbf{F} cause vector components of a couple moment that are in both the x-axis and y-axis. Thus, to compute $\overrightarrow{\boldsymbol{M}_{\boldsymbol{y}}}$ quickly one could just write $\overrightarrow{\boldsymbol{M}_{\boldsymbol{y}}}=d_{y} F=(200 \mathrm{~mm})(125 \mathrm{~N}) \hat{\imath}$.
2) It was not necessary to write each of the individual vector components. These could have been determined from a single equation that uses the principle of Resultant Moments, which is introduced in the next slides. Such that $\overrightarrow{\boldsymbol{M}_{\boldsymbol{R}}}=\overrightarrow{\boldsymbol{M}_{1}}+\overrightarrow{\boldsymbol{M}_{2}}$, where $\overrightarrow{\boldsymbol{M}_{\mathbf{1}}}=\overrightarrow{\boldsymbol{r}_{\boldsymbol{A B}}} \times \overrightarrow{\boldsymbol{F}}$, and $\overrightarrow{\boldsymbol{M}_{\mathbf{2}}}=\overrightarrow{\boldsymbol{r}_{\boldsymbol{O P}}} \times \overrightarrow{\boldsymbol{P}}$

Resultant Couple Moment

Since couple moments are vectors, their resultant is due to vector addition:

$$
\begin{aligned}
& =\Sigma \overrightarrow{\boldsymbol{M}_{\boldsymbol{i}}} \\
& =\Sigma(\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{F}})
\end{aligned}
$$

Recall couple moments are free vectors
so these can be summed to get her anywhere on the body

Two couples act on the beam with the geometry shown and $d=4 \mathrm{ft}$. Find the resultant couple

$$
\begin{aligned}
& \text { Find: } M_{R} \\
& \text { Which components of each } \\
& \text { force contributes to rotation } \\
& \text { of the body? }
\end{aligned}
$$

[^0]: https:/ /fr.wikipedia.org/wiki/Couple_(physique)

