Statics - TAM 211

Lecture 16
October 31, 2018

Announcements

\square Upcoming deadlines:

- Friday (11/2) all in Teaching Building A418-420
- 8:00 am: Quiz 3, Chapter 5. On paper.
- 9:00 am: Lecture 17
- 10:00 am: Discussion section for ALL students
- Friday (11/2)
- Written Assignment 6

Happy Ffasloween

- Tuesday (11/6)
- Prairie Learn HW7

Chapter 5: Equilibrium of Rigid Bodies

Goals and Objectives

- Introduce the free-body diagram for a rigid body
- Develop the equations of equilibrium for a 2D and 3D rigid body
- Solve rigid body equilibrium problems using the equations of equilibrium in 2D and 3D
- Introduce concepts of
- Support reactions for 2D and 3D bodies
- Two- and three-force members
- Constraints and statical determinacy

Two-force and three-force members

One can use these concepts to quickly identify the direction of an unknown force.
Two-force member: (2FM)
the two forces at ends are equal, opposite, collinear
Three-force member: a force system where the three forces

1. meet at the same point (point O), or
2. are parallel

Types of Connection
Reaction
(1)

cable
(2) weightless link
(3)

roller or pin in confined smooth slot

smooth pin or hinge

Equilibrium of a rigid body

Now we add the \mathbf{z}-axis to the coordinate system!

Equilibrium of a rigid body

Now we add the z-axis to the
coordinate system!

How many Equations of Equilibriums?
Types of Connection Reaction Number of Unknowns

roller

ball and socket

The $50-\mathrm{lb}$ mulching has a center of gravity at G. Determine the vertical reactions at the smooth contact point A.

TABLE 5-2 Continued

single thrust bearing
Shaft rotates and slides-along axis

* Couple-moments are not applied to FBD if the body is supported elsewhere by additional bearings, pins or hinges that are properly aligned to prevent rotation in one or more axes).

Given: The rod, supported by thrust bearing at A and cable BC , is subjected to an 80 lb force.
Find: Reactions at the thrust bearing A and cable BC.

A bent rod is supported by smooth journal bearings at A, B, and C. $\mathrm{F}=800 \mathrm{~N}$. The supports are properly aligned such that no moment support is present. Determine the reactions at support C.

(9)

single hinge

\mathbf{M}_{x}

(10)

fixed support

$\mathbf{M}_{x} \not \mathbf{V}_{y}^{\prime}$

6 unknowns: 3 forces, 3 couple-moments

Note: for fixed supports, must always apply couple-moments to FBD

The 100 lb door has its center of gravity at G. Determine the components of reaction at hinges A and B if hinge B resists only forces in the x and y directions and A resists forces in the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ directions.

18 in.

Determine the components of reaction at the fixed support A. The $400 \mathrm{~N}, 500 \mathrm{~N}$, and 600 N forces are parallel to the x, y, and z axes, respectively.

Draw FBD for blue structure. How many unknowns?

Calculate the reaction forces and moments at the support D at the base of the structure.

Draw FBD for blue structure. How many unknowns?

