Statics - TAM 211

Lecture 29

December 4, 2018
Chap 9.5

Announcements

\square Check ALL of your grades on Blackboard! Report issues
\square Upcoming deadlines:

- Friday (12/7)
- Written Assignment 11
- Tuesday (12/11)
- HW 12
- Quiz 6
- Week of Dec 10
- CoG thru Fluid Pressure: Lectures 26-31 (Chap 9 material)

Chapter 9 Part II - Fluid Pressure

Chap 9.5

Goal and objective

- Present a method for finding the resultant force of a pressure loading caused by a fluid

Recap: Fluid Pressure

For an incompressible fluid at rest with mass density ρ, the pressure varies linearly with depth z

- $p(z)=\rho g z=\gamma z$
where $\gamma=\rho g$ is called the specific weight (weight per unit volume).
For fresh water: $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}\left(9810 \mathrm{~N} / \mathrm{m}^{3}\right), \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Pressure $p(z)$ or force due to pressure F_{R} are always perpendicular to the object's surface.
- Distributed load per length due to fluid pressure at depth z is due to pressure and uniform width (b) of object's surface: $w(z)=p(z) \cdot b=\rho g z b=\gamma z b \quad\left[\frac{\text { force }}{\text { length }}\right]$
- Determine resultant force (magnitude and location): F_{R}, d_{R}
- If water, this force is called hydrostatic force

Determine the magnitude and location of the resultant hydrostatic force acting on the submerged rectangular plate $A B$. The plate has width 1.5 m . The density of the water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$

2 m wide rectangular gate is pinned at its center A and prevented from rotating by block at B. Determine reactions at supports due to hydrostatic pressure. Water density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$

Fluid Pressure of a flat plate with constant width

For an incompressible fluid at rest with mass density , the pressure varies linearly with depth z

Fluid Pressure of a curved plate with constant width
For an incompressible fluid at rest with mass density, the pressure varies linearly with depth z

Liquid surface

Determine the magnitude of the resultant hydrostatic force acting on the gate AB . The gate has width 1.5 m .

The arched surface $A B$ is shaped in the form of a quarter circle. If it is 8 m long, determine the horizontal and vertical components of the resultant force caused by the water acting on the surface.

The semicircular drainage pipe is filled with water. Determine the resultant force that the water exerts on the side $A B$ of the pipe per foot of pipe length. The specific weight of the water is $\gamma=62.4 \mathrm{lb} / \mathrm{ft}^{3}$

