Statics - TAM 211

Lecture 32
December 12, 2018
Chap 10.1, 10.2, 10.4, 10.8

Announcements

- ☐ Check ALL of your grades on Blackboard! Report issues
- Prof. H-W office hours
 - Monday 3-5pm (Room C315 ZJUI Building)
 - Wednesday 7-8pm (Residential College Lobby)
- □ Upcoming deadlines:
 - Friday (12/14)
 - Written Assignment 12
 - Friday (12/14) all in Teaching Building A418-420
 - 9:00 am: Quiz 6, On paper. Chapter 9 (CoG thru Fluid Pressure)
 - 10:00 am: Discussion section for ALL students
 - No lecture to accommodate quiz 6 testing time
 - Tuesday (12/18)
 - HW 13

Chapter 10: Moments of Inertia

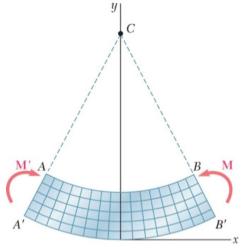
Goals and Objectives

- Understand the term "moment" as used in this chapter
- Determine and know the differences between
 - First/second moment of area
 - Moment of inertia for an area
 - Polar moment of inertia
 - Mass moment of inertia
- Introduce the parallel-axis theorem.
- Be able to compute the moments of inertia of composite areas.

Recap: Area moment of inertia (Second moment of area)

• The moment of inertia of the area A with respect to the x-axis is given by

$$I_x = \int_A y^2 \, dA$$

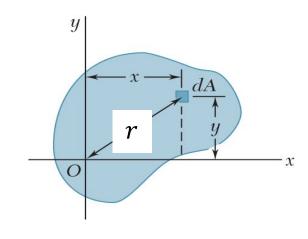

• The moment of inertia of the area A with respect to the y-axis is given by

$$I_y = \int_A x^2 \, dA$$

• The moment of inertia of the area A with respect to the origin *O* is given by (Polar moment of inertia)

$$J_0 = \int_A r^2 dA = \int_A (x^2 + y^2) dA = I_y + I_x$$

Moment-curvature relation:

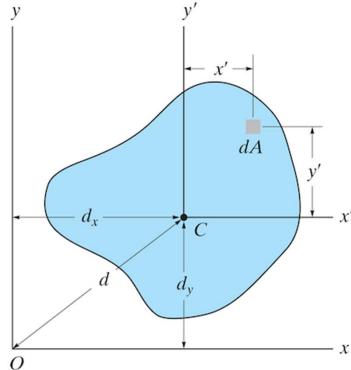


$$|M_z| = \frac{EI_z}{\rho}$$

 I_z : Moment of inertia of cross-sectional area

E: Elasticity modulus (characterizes stiffness of the deformable body)

ρ: curvature


From inside back cover of Hibbler textbook

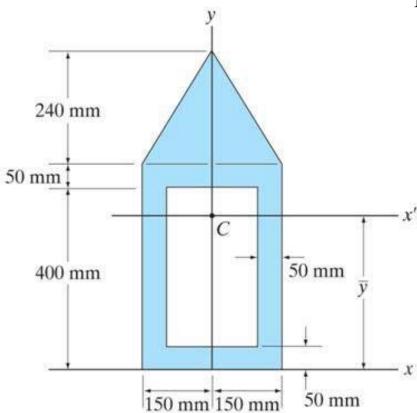
Geometric Properties of Line and Area Elements Centroid Location Centroid Location Area Moment of Inertia Circular arc segment Circular sector area Quarter and semicircle arcs Quarter circle area $I_x = \frac{1}{8}\pi r^4$ $I_y = \frac{1}{8}\pi r^4$ Trapezoidal area Semicircular area $I_x = \frac{1}{4}\pi r^4$ $I_y = \frac{1}{4}\pi r^4$ Semiparabolic area Circular area $I_y = \frac{1}{12}hb^3$ Exparabolic area Rectangular area $I_x = \frac{1}{36}bh^3$ Parabolic area Triangular area

Recap: Parallel axis theorem

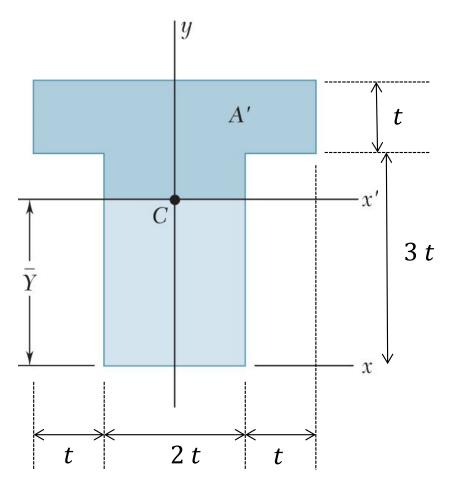
- Often, the **moment of inertia** of an area is known for an axis passing through the **centroid**; e.g., x' and y':
- The moments around other axes can be computed from the known $I_{x'}$ and $I_{y'}$:

$$I_x = I_{x'} + Ad_y^2$$

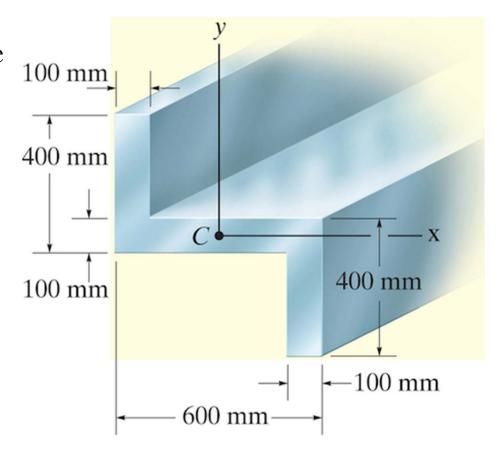
 $I_y = I_{y'} + Ad_x^2$
 $J_O = J_C + A(d_x^2 + d_y^2) = J_C + Ad^2$

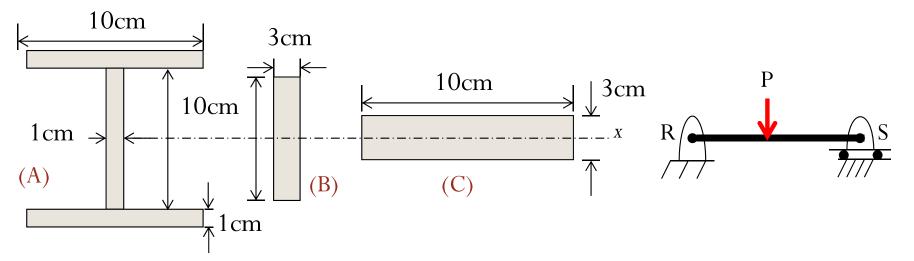


Note: the integral over y' gives zero when done through the centroid axis.

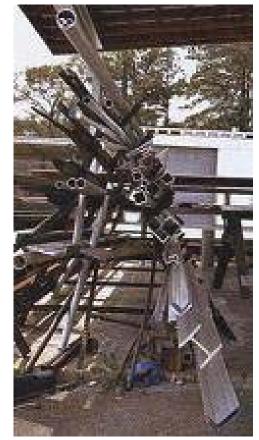

Recap: Moment of inertia of composite

• If individual bodies making up a **composite** body have individual areas *A* and moments of inertia *I* computed through a common axis, then the **composite area** and **moment of inertia** is a sum of the individual component contributions about the axis


This requires the **parallel axis theorem**:

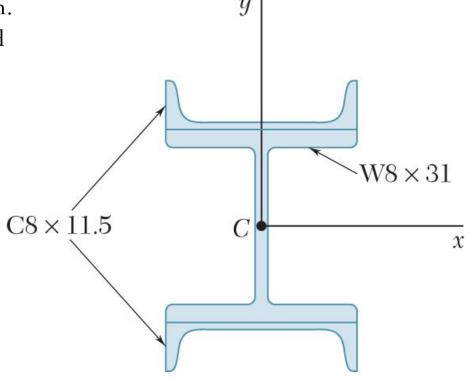


Find the moment of inertia of the shape about its centroid:



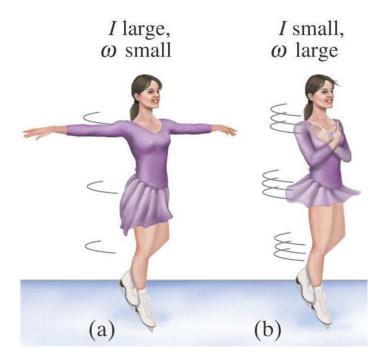
Determine the moment of inertia for the cross-sectional area about the *x* and *y* centroidal axes.

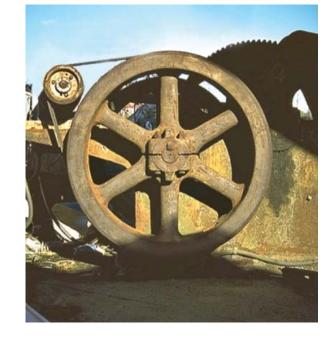
Consider three different possible cross sectional shapes and areas for the beam RS. For the given vertical loading P on the beam, which shape will develop less internal stress and deflection?


English units (inches)

							Axis X-X		Axis Y-Y			
				Area	Depth	Width						
			Designation in ²		in.	in.	\overline{I}_x , in ⁴	\overline{k}_x , in.	\overline{y} , in.	\overline{I}_y , in4	\overline{k}_{g} , in.	\overline{x} , in.
	W Shapes (Wide-Flange Shapes)	X X X	W18 × 76† W16 × 57 W14 × 38 W8 × 31	22.3 16.8 11.2 9.12	18.2 16.4 14.1 8.00	11.0 7.12 6.77 8.00	1330 758 385 110	7.73 6.72 5.87 3.47		152 43.1 26.7 37.1	2.61 1.60 1.55 2.02	
	S Shapes (American Standard Shapes)	X X X	\$18 × 54.7† \$12 × 31.8 \$10 × 25.4 \$6 × 12.5	16.0 9.31 7.45 3.66	18.0 12.0 10.0 6.00	6.00 5.00 4.66 3.33	801 217 123 22.0	7.07 4.83 4.07 2.45		20.7 9.33 6.73 1.80	1.14 1.00 0.980 0.702	
	C Shapes (American Standard Channels)	$X \longrightarrow X$ Y	C12×20.7† C10×15.3 C8×11.5 C6×8.2	6.08 4.48 3.37 2.39	12.0 10.0 8.00 6.00	2.94 2.60 2.26 1.92	129 67.3 32.5 13.1	4.61 3.87 3.11 2.34		3.86 2.27 1.31 0.687	0.797 0.711 0.623 0.536	0.698 0.634 0.572 0.512
	Angles Y		L6×6×1‡ L4×4×½ L3×3×¼ L6×4×½ L5×3×½ L3×2×¼	11.0 3.78 1.44 4.78 3.78 1.19			35.4 5.52 1.23 17.3 9.43 1.09	1.79 1.21 0.926 1.91 1.58 0.963	1.86 1.18 0.836 1.98 1.74 0.980	35.4 5.52 1.23 6.22 2.55 0.390	1.79 1.21 0.926 1.14 0.824 0.569	1.86 1.18 0.836 0.981 0.746 0.487

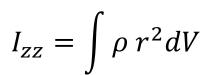
Metric units (mm)


vietric uriits (mini)						Axds X-X			Axis Y-Y		
		Designation	Area mm²	Depth mm	Width mm	\(\overline{I}_x\) 105 mm ⁴	\overline{k}_{x} mm	<i>y</i> mm	\overline{I}_y $10^6\mathrm{mm}^4$	\overline{k}_{y} mm	\overline{x} mm
W Shapes (Wide-Flange Shapes)	X X X	W460 × 113† W410 × 85 W360 × 57.8 W200 × 46.1	14400 10800 7230 5880	462 417 358 203	279 181 172 203	554 316 160 45.8	196 171 149 88.1		63.3 17.9 11.1 15.4	66.3 40.6 39.4 51.3	
S Shapes (American Standard Shapes)	X X X	S460 × 81.4† S310 × 47.3 S250 × 37.8 S150 × 18.6	10300 6010 4810 2360	457 305 254 152	152 127 118 84.6	333 90.3 51.2 9.16	180 123 103 62.2		8.62 3.88 2.80 0.749	29.0 25.4 24.1 17.8	
C Shapes (American Standard Channels)	$X \longrightarrow X$ $X \longrightarrow \overline{X}$	C310 × 30.8† C250 × 22.8 C200 × 17.1 C150 × 12.2	3920 2890 2170 1540	305 254 203 152	74.7 66.0 57.4 48.8	53.7 28.0 13.5 5.45	117 98.3 79.0 59.4		1.61 0.945 0.545 0.296	20.2 18.1 15.8 13.6	17.7 16.1 14.5 13.0
Angles Y	<u></u> <u>†</u> ȳ	L152 × 152 × 25.4‡ L102 × 102 × 12.7 L76 × 76 × 6.4 L152 × 102 × 12.7 L127 × 76 × 12.7 L76 × 51 × 6.4	7100 2420 929 3060 2420 768			14.7 2.30 0.512 7.20 3.93 0.454	45.5 30.7 23.5 48.5 40.1 24.2	47.2 30.0 21.2 50.3 44.2 24.9	14.7 2.30 0.512 2.59 1.06 0.162	45.5 30.7 23.5 29.0 20.9 14.5	47.2 30.0 21.2 24.9 18.9 12.4


Two channels are welded to a rolled W section as shown. Determine the area moments of inertia of the combined section with respect to the centroidal x and y axes.

Mass Moment of Inertia

- **Mass moment of inertia** is the mass property of a rigid body that determines the torque T needed for a desired angular acceleration (α) about an axis of rotation.
- A larger mass moment of inertia around a given axis requires more torque to increase the rotation, or to stop the rotation, of a body about that axis
- Mass moment of inertia depends on the shape and density of the body and is different around different axes of rotation.

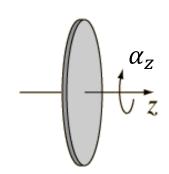


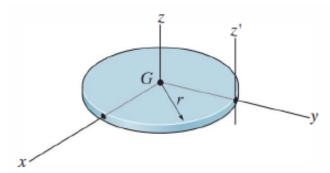
http://ffden-2.phys.uaf.edu/webproj/211 fall 2014/Ari el Ellison/Ariel Ellison/Angular.html

Mass Moment of Inertia

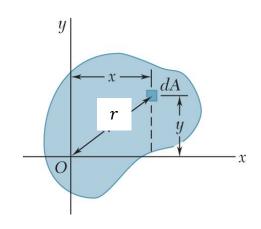
Torque-acceleration relation: $T = I \alpha$

where the mass moment of inertia is defined as

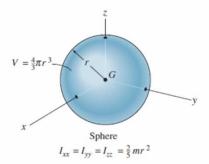

If $\rho = \text{constant}$, $I_{zz} = \int r^2 dm$

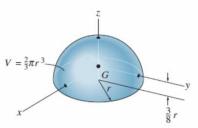


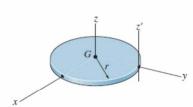
$$I_{zz} = \int \rho r^2 dv = \int_0^t \int_0^{2\pi} \int_0^R \rho r^2 (r dr d\theta dz)$$


$$= \rho \int_0^t \int_0^{2\pi} \frac{r^4}{4} d\theta dz$$

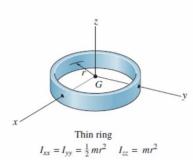
$$= \rho \int_0^t \frac{r^4}{2} \pi dz = \rho \frac{r^4}{2} \pi t = \frac{r^2}{2} \rho \pi r^2 t = \frac{r^2}{2} \rho V = \frac{r^2}{2} M$$

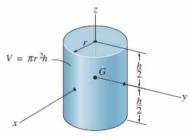



Thin Circular disk $I_{xx}=I_{yy}=\tfrac{1}{4}mr^2\quad I_{zz}=\tfrac{1}{2}mr^2\quad I_{z'z'}=\tfrac{3}{2}mr^2$

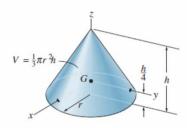

Center of Gravity and Mass Moment of Inertia of Homogeneous Solids

From inside back cover of Hibbler textbook

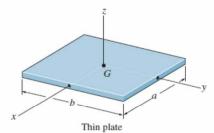


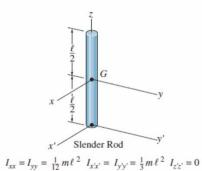


Hemisphere $I_{xx} = I_{yy} = 0.259mr^2 \quad I_{zz} = \frac{2}{5}mr^2$



Thin Circular disk $I_{xx}=I_{yy}=\tfrac{1}{4}mr^2\quad I_{zz}=\tfrac{1}{2}mr^2\quad I_{z'z'}=\tfrac{3}{2}mr^2$




Cylinder $I_{xx} = I_{yy} = \frac{1}{12} m(3r^2 + h^2) \quad I_{zz} = \frac{1}{2} mr^2$

Cone $I_{xx} = I_{yy} = \frac{3}{80} m (4r^2 + h^2) \ I_{zz} = \frac{3}{10} m r^2$

$$I_{xx} = \tfrac{1}{12} \ mb^2 \quad I_{yy} = \tfrac{1}{12} \ ma^2 \quad I_{zz} = \tfrac{1}{12} \ m(a^2 + b^2)$$

