# TAM 212 - Dynamics

**Wayne Chang** 

Summer 2019

### Recap

Tangential-normal acceleration

### **Today**

- Tangential-normal basis examples
- Tangential-normal basis in 3D

s = arc length

 $\dot{s} = v = \text{speed}$ 

 $\ddot{s}$  = rate of change of speed

#### **Velocity**

$$\vec{v} = \dot{s}\hat{e}_t = v_t\hat{e}_t + v_n\hat{e}_n$$
 $v_t = \dot{s}$   $v_n = 0$ 

osculating circle – matches 1st and 2nd derivatives



 $\overrightarrow{v}$  velocity – matches 1st derivative

#### <u>Acceleratio</u>

$$\frac{\mathbf{n}}{\mathbf{d}} = \ddot{s}\hat{e}_t + \frac{\dot{s}^2}{\rho}\hat{e}_n = a_t\hat{e}_t + a_n\hat{e}_n$$

$$a_t = \ddot{s}$$

$$a_n = \frac{\dot{s}^2}{\rho} = \frac{\text{centripetal}}{\text{acceleration}}$$

$$\rho = \frac{1}{\kappa} \begin{cases} \rho = \text{ radius of curvature} \\ \kappa = \text{ curvature} \end{cases}$$

## Dashboard of a car



Which meters will indicate acceleration?

# **Example**

Oval racetrack

Car travels CCW at constant speed



## **Example**

Comet travels CCW around an elliptical orbit.

Kepler's second law: A line joining the sun and comet sweeps equal areas in equal time.





# Tangential-Normal basis in 3D

$$\begin{split} \hat{e}_t &= \hat{v} \quad \text{tangential} \\ &= \quad \dot{\hat{e}}_t \\ \hat{e}_n &= \frac{\dot{\hat{e}}_t}{\left\|\dot{\hat{e}}_t\right\|} = \text{normal} \\ \hat{e}_b &= \hat{e}_t \times \hat{e}_n = \text{binormal} \end{split}$$

Can also find  $\hat{e}_n$  from  $\vec{a}$ 



# **Example**

Car is speeding up and has:

$$\vec{r} = 4\hat{\imath} + 2\hat{\jmath}$$
 m

$$\vec{v} = 6\hat{\imath} \text{ m/s}$$

$$a = 5 \text{ m/s}^2$$

$$\rho = 12 \text{ m}$$



$$\dot{v} = A. -4 \text{ m/s}^2$$

$$C. 0 m/s^2$$

$$\dot{v} = A. -4 \text{ m/s}^2$$
 B. -2 m/s<sup>2</sup> C. 0 m/s<sup>2</sup> D. 2 m/s<sup>2</sup> E. 4 m/s<sup>2</sup>

$$v = \dot{s}$$

$$\dot{v} = \ddot{s}$$

$$\dot{v} = \ddot{s}$$

$$\vec{a} = \ddot{s}\hat{e}_t + \frac{\dot{s}^2}{\rho}\hat{e}_n$$

### **Particle Kinetics**

Kinematics 
$$\longrightarrow$$
  $\vec{r}$ ,  $\vec{v}$ ,  $\vec{a}$  (no forces)

Kinetics  $\longrightarrow$   $\vec{F} = m\vec{a}$ , forces, moments



Classical Mechanics: "All models are wrong. Some models are useful." - George Box

# Classical Mechanics: $\sum \vec{F} = m\vec{a}$

Method of assumed forces:  $\vec{F} \rightarrow \vec{a}$  (simulation)

Method of assumed motion:  $\vec{a} \rightarrow \vec{F}$  (measurement)

Example: Assumed Forces: Cannon

