TAM 212 - Dynamics

Wayne Chang

Summer 2019

Recap

- Tangential-normal to Cartesian mapping.
- Particle Kinetics, numerical Integration.

Today

Rigid Body Motion

Solving dynamics problems:

- 1. System diagram ← coordinates, measurements
- 2. Free body diagrams (FBD) \leftarrow real forces only (no centripetal "force")
- 3. Kinematics ← acceleration in appropriate coordinates
- 4. Kinetics $\leftarrow \Sigma \vec{F} = m\vec{a}$ or in each component
- 5. Algebra

Tangential-Normal Basis Formulation

$$\vec{r} = 2t^2\hat{\imath} + (-3t - 3)\hat{\jmath}$$
 m

What is the tangential basis vector \hat{e}_t at t = 2 s?

What is the normal basis vector \hat{e}_n at t = 2 s?

Tangential-Normal Basis Formulation

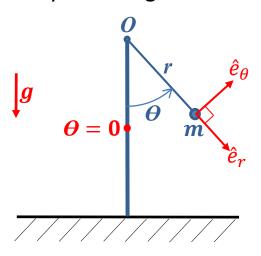
$$\vec{r} = 2t^2\hat{\imath} + (-3t - 3)\hat{\jmath}$$
 m

What is the radius of curvature at t = 2 s?

What are the Cartesian coordinates of the center of the osculating circle at t = 2 s?

Particle Kinematics

1. System diagram

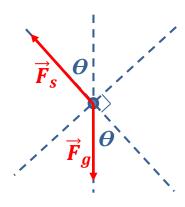


3. Kinematics

$$a_r = -r\dot{\theta}^2$$

$$a_{\theta} = r\ddot{\theta}$$

2. FBD



$$F_{sr} = -T$$

$$F_{s\theta}=0$$

$$F_{qr} = mg\cos\theta$$

$$F_{gr} = mg\cos\theta$$

 $F_{g\theta} = -mg\sin\theta$

4. Kinetics

$$\Sigma F_r = ma_r$$
: $-T + mg \cos \theta = -mr\dot{\theta}^2$

$$\Sigma F_{\theta} = ma_{\theta} : 0 - \text{mg} \sin \theta = mr\ddot{\theta}$$

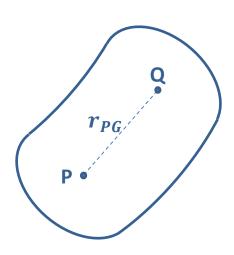
5. Algebra

$$\ddot{\theta} = -\frac{g}{r}\sin\theta = \alpha$$

$$T = mg\cos\theta + mr\dot{\theta}^{2}$$

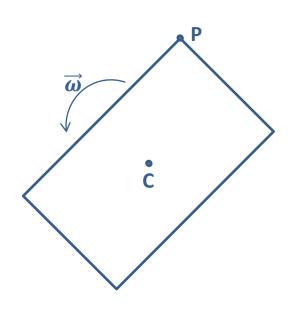
Rigid Bodies

Definition: A rigid body has constant distance between any two points on the body.



 $r_{PG} = constant$

Rotating Rigid Bodies

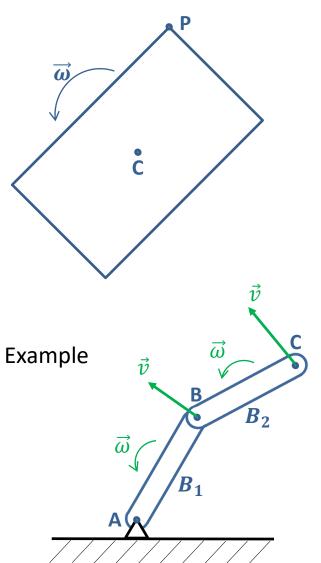


Angular velocity vectors $\overrightarrow{\omega}_{\mathcal{C}}$, $\overrightarrow{\omega}_{\mathcal{P}}$

$$\vec{\omega}_C = \omega_{CZ} \hat{k}$$

$$\vec{\omega}_P = \omega_{PZ} \hat{k}$$

Rotating Rigid Bodies

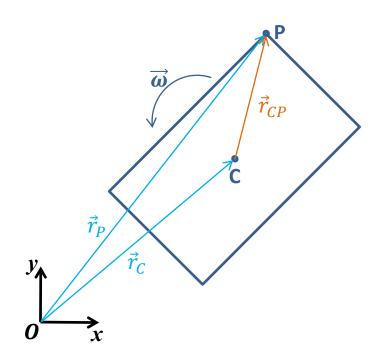


Angular velocity $\vec{\omega}$ belongs to the whole rigid body.

Positions and velocities belong to points.

How should we label velocities \vec{v} and angular velocities $\vec{\omega}$?

Rigid body velocity formula (relative velocity)



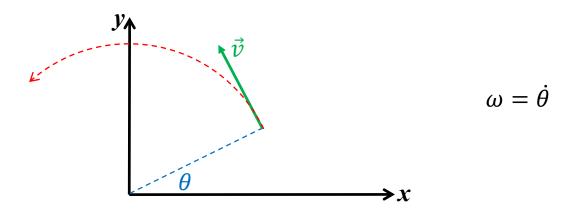
 $\vec{v}_{P/C} = \text{velocity of P relative to C}$

What direction and magnitude does $\vec{v}_{P/C}$ have?

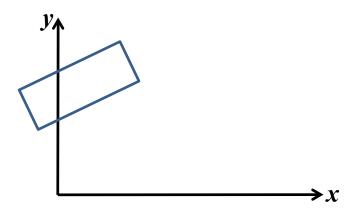
$$\vec{v}_{P/C} =$$

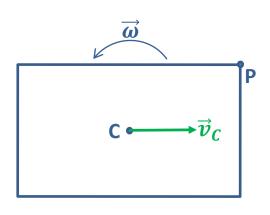
Two different usages of "angular velocity"

1. Angular velocity of a point about the origin



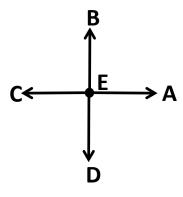
2. Angular velocity of a rigid body





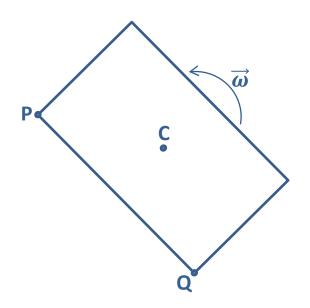
$$\vec{v}_C=3\hat{\imath}$$
 m/s $\vec{\omega}=2\hat{k}$ rad/s $\vec{r}_{CP}=(2\hat{\imath}+\hat{\jmath})$ m What is \vec{v}_P ?

1. Predict Which direction is closest to \vec{v}_P ?



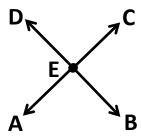
2. Calculate

3. Reflect Does this make sense?

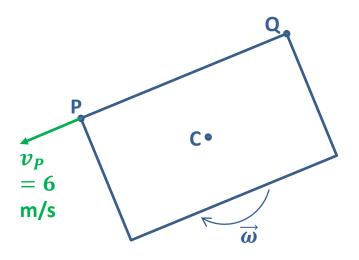


$$ec{v}_P = -3\hat{\jmath} \; \mathrm{m/s}$$
 $ec{\omega} = \hat{k} \; \mathrm{rad/s}$ $ec{r}_{PQ} = (2\hat{\imath} - 2\hat{\jmath}) \; \mathrm{m}$ What is $ec{v}_Q$?

- 1. Predict Which direction is closest to \vec{v}_{o} ?
- 2. Calculate



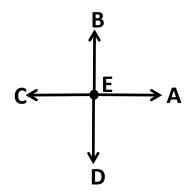
3. Reflect Does this make sense?



$$v_P=6~{
m m/s}$$
 $ec{\omega}=-3\hat{k}~{
m rad/s}$ $r_{PQ}=2~{
m m}$

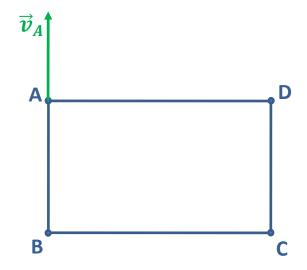
What is the speed v_Q ?

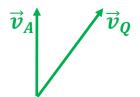
1. Predict (a) Which direction is closest to \vec{v}_Q ?



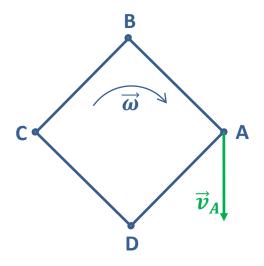
2. <u>Calculate</u>

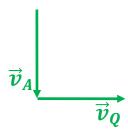
3. Reflect Does this make sense?





Which point is Q?





Which point is Q?