Announcements

- HW4/R9 due Mon, May 4
- HW10 not for credit
- RIO Canceled
- Final exam schedule

Dry/Coulomb Fridion (2D) - multiple cases:

A Slip 1. relative motion $v \neq 0$ or $a \neq 0$ $z \cdot F = \mu N$

3. Ê opposes motion

(î or â)

Stick

(. No relative motion

V=0 and a=0

Z. F = MN

(magnitudes)

1. no relative motion

v=0 and d=0

2. critical friction force

F= MN

Solution Procedure (known case) - determine case (stick, transition, slip left, slip right) - FBD, equations depending on case, solve Solution Procedure (unknown case) antant palt - Try stick: assume V=0, a=0, N, F dSSume solve for motion, N, F contact. check IFI = M/NI - Try slip left: assume F= nN to the right solve for motion of contact point a ssume and N, F for cton check v+0 or a+0 and force É opposes motion (î on â) - Try slip right: assume F= uN to the left then same as slip left.

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s}^2$$

Stick

What
$$A \cdot |F| \leq_{n} |N|$$

What $B \cdot \hat{F} = pposes \hat{V} = \hat{A}$

We $C \cdot a_{c*} = 0$

Check? $D \cdot a_{q*} = 0$
 $E \cdot |F| = n |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

$$\vec{F} = -14 - 7 : N$$
 $\vec{N} = 34.6 : N$
 $\vec{a}_c = -8.38 : m/s^2$
 $x_z = 2.10 \; rad/s^2$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s}^2$$

Which
$$A. Z \vec{f} = m\vec{a}_{c}$$

eqn X $B. Z M_{Q2} = I_{Q2} x_{2}$
do we $C. Z M_{C2} = I_{C2} x_{2}$
NOT $\vec{a}_{Q} = 0$
use? $\vec{F} = \mu N$

What
$$A \cdot |F| \leq_{\mu} |N|$$

What $A \cdot |F| \leq_{\mu} |N|$

do $A \cdot |F| \leq_{\mu} |N|$

We $C \cdot |A| = 0$

Check? $A \cdot |F| = |A| |N|$
 $A \cdot |F| \leq_{\mu} |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

À opposes à

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

Is this valid?

A. Yes

E-No

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s}^2$$

Slip night

Which
$$A. \Sigma \vec{F} = m\vec{a}_{c}$$

eqn $A. \Sigma M_{Q2} = I_{Q2} K_{2}$
do we $C. \Sigma M_{C2} = I_{C2} K_{2}$
NOT $\vec{a}_{Q} = 0$
use? $E. \vec{F} = \mu N$

What
$$A \cdot |F| \leq_{n} |N|$$

What $B \cdot \hat{F} = pposes \hat{V} = \hat{A}$

We $C \cdot a_{cx} = 0$

Check?

 $D \cdot a_{qx} = 0$
 $E \cdot |F| = n |N|$

A uniform rigid disk of mass $m=7~\mathrm{kg}$ and radius $r=4~\mathrm{m}$ starts at rest on a flat ground as shown. Force $\vec{D}=-44\hat{\imath}+34\hat{\jmath}~\mathrm{N}$ acts at point P on the top edge, and gravity $g=9.8~\mathrm{m/s^2}$ acts vertically. The coefficient of friction between the disk and the ground is $\mu=0.25$.

What is the angular acceleration $\vec{\alpha}$ of the disk?

$$\vec{\alpha} = \hat{k} \operatorname{rad/s^2}$$

$$\vec{F} = -8.65 \text{ î N}$$

$$\vec{A} = 34.6 \text{ j N}$$

$$\vec{A}_c = -7.52 \text{ î m/s²}$$

$$\vec{A}_c = 7.52 \text{ rad/s²}$$

$$\vec{A}_a = 7.58 \text{ i m/s²}$$

Valid?

A Yes B. No Ex

Pisk starts at rest.

No granty.

Force $D_X > 0$ is applied at P.

Q accelerates

B. 2200

C. right

Pisk starts at rest.

No gravity.

Force $D_X > 0$ is applied at P.

A accelerates $A = P_X r$ $A = P_X r$

 $A \cdot \frac{2 \frac{D_x}{M}}{B \cdot \frac{D_x}{M}} = a$ $C \cdot \frac{D}{D} \cdot \frac{d^2x}{M}$ $E \cdot \frac{-2 \frac{D_x}{M}}{M}$

 $A. \frac{20x}{mr}$ $B. \frac{0x}{mr}$ C. 0 $0. -\frac{0x}{mr}$ C. -20

 $d_{Qx} = \begin{cases} A \cdot 2\frac{D_x}{m} \\ B \cdot \frac{D_x}{m} \\ C \cdot \frac{D_x}{m} \\ E \cdot -2\frac{D_x}{m} \end{cases}$