Processing math: 5%

TAM 212: Introductory Dynamics

Vector identities #rvi

This page lists some commonly used vector identities.

Dot product symmetry.#rvi‑ed

ab=ba

Derivation

Dot product vector length.#rvi‑eg

aa=

Derivation

Dot product bi-linearity.#rvi‑ei

\begin{aligned} \vec{a} \cdot (\vec{b} + \vec{c}) &= \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \\ (\vec{a} + \vec{b}) \cdot \vec{c} &= \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} \\ \vec{a} \cdot (\beta \vec{b}) &= \beta (\vec{a} \cdot \vec{b}) = (\beta \vec{a}) \cdot \vec{b}\end{aligned}

Derivation

Cross product anti-symmetry.#rvi‑ea

\begin{aligned} \vec{a} \times \vec{b} = - \vec{b} \times \vec{a}\end{aligned}

Derivation

Cross product self-annihilation.#rvi‑ez

\begin{aligned} \vec{a} \times \vec{a} = 0 \end{aligned}

Derivation

Cross product bi-linearity.#rvi‑eb

\begin{aligned} \vec{a} \times (\vec{b} + \vec{c}) &= \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \\ (\vec{a} + \vec{b}) \times \vec{c} &= \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \\ \vec{a} \times (\beta \vec{b}) &= \beta (\vec{a} \times \vec{b}) = (\beta \vec{a}) \times \vec{b} \end{aligned}

Derivation

The scalar triple product is \vec{a} \cdot (\vec{b} \times \vec{c}), which gives the volume of the parallelepiped defined by \vec{a}, \vec{b}, \vec{c}. It satisfies:

Scalar triple product formula.#rvi‑es

\begin{aligned} \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})\end{aligned}

Derivation

The vector triple product is \vec{a} \times (\vec{b} \times \vec{c}). It satisfies:

Vector triple product expansion.#rvi‑ev

\begin{aligned} \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\end{aligned}

Derivation

Cross product orthogonality.#rvi‑eo

\begin{aligned} \vec{a} \times \vec{b} \text{ is orthogonal to both } \vec{a} \text{ and } \vec{b}\end{aligned}

Derivation

Binet-Cauchy identity.#rvi‑eb

\begin{aligned} (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})\end{aligned}

Derivation

Lagrange's identity.#rvi‑el

\begin{aligned} \| \vec{a} \times \vec{b} \|^2 = \|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a} \cdot \vec{b})^2\end{aligned}

Derivation

Cross product length.#rvi‑ee

\begin{aligned} \| \vec{a} \times \vec{b} \| = \|\vec{a}\| \|\vec{b}\| \sin\theta\end{aligned}

Derivation

Jacobi's identity.#rvi‑ej

\begin{aligned} \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0\end{aligned}

Derivation

Vector quadruple product expansion.#rvi‑eq

\begin{aligned} (\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) = \big( \vec{a} \cdot (\vec{b} \times \vec{c}) \big) \vec{a}\end{aligned}

Derivation