Vector identities #rvi
This page lists some commonly used vector identities.
Dot product symmetry.#rvi‑ed
→a⋅→b=→b⋅→a
Derivation
Dot product vector length.#rvi‑eg
→a⋅→a=‖
Derivation
Dot product bi-linearity.#rvi‑ei
\begin{aligned} \vec{a} \cdot (\vec{b} + \vec{c}) &= \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \\ (\vec{a} + \vec{b}) \cdot \vec{c} &= \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} \\ \vec{a} \cdot (\beta \vec{b}) &= \beta (\vec{a} \cdot \vec{b}) = (\beta \vec{a}) \cdot \vec{b}\end{aligned}
Derivation
Cross product anti-symmetry.#rvi‑ea
\begin{aligned} \vec{a} \times \vec{b} = - \vec{b} \times \vec{a}\end{aligned}
Derivation
Cross product self-annihilation.#rvi‑ez
\begin{aligned} \vec{a} \times \vec{a} = 0 \end{aligned}
Derivation
Cross product bi-linearity.#rvi‑eb
\begin{aligned} \vec{a} \times (\vec{b} + \vec{c}) &= \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \\ (\vec{a} + \vec{b}) \times \vec{c} &= \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \\ \vec{a} \times (\beta \vec{b}) &= \beta (\vec{a} \times \vec{b}) = (\beta \vec{a}) \times \vec{b} \end{aligned}
Derivation
The scalar triple product is \vec{a} \cdot (\vec{b} \times \vec{c}), which gives the volume of the parallelepiped defined by \vec{a}, \vec{b}, \vec{c}. It satisfies:
Scalar triple product formula.#rvi‑es
\begin{aligned} \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})\end{aligned}
Derivation
The vector triple product is \vec{a} \times (\vec{b} \times \vec{c}). It satisfies:
Vector triple product expansion.#rvi‑ev
\begin{aligned} \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\end{aligned}
Derivation
Cross product orthogonality.#rvi‑eo
\begin{aligned} \vec{a} \times \vec{b} \text{ is orthogonal to both } \vec{a} \text{ and } \vec{b}\end{aligned}
Derivation
Binet-Cauchy identity.#rvi‑eb
\begin{aligned} (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = (\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d}) - (\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})\end{aligned}
Derivation
Lagrange's identity.#rvi‑el
\begin{aligned} \| \vec{a} \times \vec{b} \|^2 = \|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a} \cdot \vec{b})^2\end{aligned}
Derivation
Cross product length.#rvi‑ee
\begin{aligned} \| \vec{a} \times \vec{b} \| = \|\vec{a}\| \|\vec{b}\| \sin\theta\end{aligned}
Derivation
Jacobi's identity.#rvi‑ej
\begin{aligned} \vec{a} \times (\vec{b} \times \vec{c}) + \vec{b} \times (\vec{c} \times \vec{a}) + \vec{c} \times (\vec{a} \times \vec{b}) = 0\end{aligned}
Derivation
Vector quadruple product expansion.#rvi‑eq
\begin{aligned} (\vec{a} \times \vec{b}) \times (\vec{a} \times \vec{c}) = \big( \vec{a} \cdot (\vec{b} \times \vec{c}) \big) \vec{a}\end{aligned}
Derivation