Normal (axial) stress: σ=FA
Direct (average) shear stress: τave=VA
Normal (axial) strain: ϵ=δL (also denoted as ϵaxial )
Lateral strain: ϵlateral=−νϵaxial
Shear strain: γ≈tanγ=δh (note this is defined by a change in angle!)
Force-elongation-temperature relation: δ=FLEA+αLΔTk=EAL=1f
Constitutive relations: σ=Eϵτ=Gγ
Isotropic materials: G=E2(1+ν)
Normal stresses on inclined plane: σn=n⋅ tn=n⋅ Tn=σxcos2(θ)+2τxysin(θ)cos(θ)+σysin2(θ)
Shear stresses on inclined plane: τns=s⋅ tn=s⋅ Tn=(σy−σx)sin(θ)cos(θ)+τxy(cos2(θ)−sin2(θ))
Torsion: τ=TrJτ=Gγγ=rϕLϕ=TLJG
For circular cross section: J=πd432 and Ic′=πr44=πd464
Relations among distributed load, shear and bending moment: dVdx=−w and dMdx=V
Parallel axis-theorem: Ic=Ic′+Ad2cc′
Centroid of the semi-circle: ˉy=4R3π
Normal stress: σx=FA+MyzIy−MzyIz
Shear stress (due to transverse shear force): τ=VQIt
First moment: Q=Aˉy
Generalized Hooke's law:
ϵx=+1Eσx−νEσy−νEσz
ϵy=−νEσx+1Eσy−νEσz
ϵz=−νEσx−νEσy+1Eσz
γxy=τxyG
γxz=τxzG
γyz=τyzG
Transformation of Plane-Stress:
σx′=σx+σy2+σx−σy2cos(2θ)+τxysin(2θ)
σy′=σx+σy2−σx−σy2cos(2θ)−τxysin(2θ)
τx′y′=−σx−σy2sin(2θ)+τxycos(2θ)
Mohr's circle center: σave=σx+σy2
Mohr's circle radius: R=√(σx−σy2)2+(τxy)2
Principal stresses: σ1=σave+R and σ2=σave−R
Orientation of principal plane: tan(2θp)=τxy(σx−σy)/2
Cylindrical pressure vessels: σh=prt and σa=pr2t
Tresca criterion:
|σ1|=σY,|σ2|=σYwhenσ1,σ2have the same sign
|σ1−σ2|=σYwhenσ1,σ2have opposite sign
Von-Mises criterion:
σ21−σ1σ2+σ22=σ2Y
Deflection: y″
Buckling:
P_{cr} = \frac{\pi^2 \,EI}{(Le)^2}
pinned-pinned: Le = L
pinned-fixed: Le = 0.7\,L
fixed-fixed: Le = 0.5\,L
fixed-free: Le = 2\,L