Processing math: 86%

Normal (axial) stress: σ=FA

Direct (average) shear stress: τave=VA

Normal (axial) strain: ϵ=δL (also denoted as ϵaxial )

Lateral strain: ϵlateral=νϵaxial

Shear strain: γtanγ=δh (note this is defined by a change in angle!)

Force-elongation-temperature relation: δ=FLEA+αLΔTk=EAL=1f

Constitutive relations: σ=Eϵτ=Gγ

Isotropic materials: G=E2(1+ν)

Normal stresses on inclined plane: σn=n tn=n Tn=σxcos2(θ)+2τxysin(θ)cos(θ)+σysin2(θ)

Shear stresses on inclined plane: τns=s tn=s Tn=(σyσx)sin(θ)cos(θ)+τxy(cos2(θ)sin2(θ))

Torsion: τ=TrJτ=Gγγ=rϕLϕ=TLJG

For circular cross section: J=πd432 and Ic=πr44=πd464

Relations among distributed load, shear and bending moment: dVdx=w and dMdx=V

Parallel axis-theorem: Ic=Ic+Ad2cc

Centroid of the semi-circle: ˉy=4R3π

Normal stress: σx=FA+MyzIyMzyIz

Shear stress (due to transverse shear force): τ=VQIt

First moment: Q=Aˉy

Generalized Hooke's law:

ϵx=+1EσxνEσyνEσz

ϵy=νEσx+1EσyνEσz

ϵz=νEσxνEσy+1Eσz

γxy=τxyG

γxz=τxzG

γyz=τyzG

Transformation of Plane-Stress:

σx=σx+σy2+σxσy2cos(2θ)+τxysin(2θ)

σy=σx+σy2σxσy2cos(2θ)τxysin(2θ)

τxy=σxσy2sin(2θ)+τxycos(2θ)

Mohr's circle center: σave=σx+σy2

Mohr's circle radius: R=(σxσy2)2+(τxy)2

Principal stresses: σ1=σave+R and σ2=σaveR

Orientation of principal plane: tan(2θp)=τxy(σxσy)/2

Cylindrical pressure vessels: σh=prt and σa=pr2t

Tresca criterion:

|σ1|=σY,|σ2|=σYwhenσ1,σ2have the same sign

|σ1σ2|=σYwhenσ1,σ2have opposite sign

Von-Mises criterion:

σ21σ1σ2+σ22=σ2Y

Deflection: y

Buckling:

P_{cr} = \frac{\pi^2 \,EI}{(Le)^2}

pinned-pinned: Le = L

pinned-fixed: Le = 0.7\,L

fixed-fixed: Le = 0.5\,L

fixed-free: Le = 2\,L