TAM 251 Example Multiple Choice Final Exam

- There are XX multiple choice questions, each one worth 1 point.
- \bullet There are X "written" questions, combined they are worth XX points.
- This is a 3 hour exam.
- You must not communicate with other students during this test.
- You can use a calculator.
- Close-book, close-note exam.
- Do not turn this page until instructed to do so.
- There are several different versions of this exam.

-1	T7.11	•		• •	, •
l.	F'111	\mathbf{n}	vour	intorn	nation:

Full Name:	
Discussion Section:	
UIN (Student Number):	
NetID:	

2. Circle your discussion section:

	Tuesday	Wednesday	Thursday	Friday
12-1	ADC: Ouli and Shikhar			
	ADD: Arif and Kallol			
1-2				ADF: Shikhar and Kallol
4-5	ADE: Ouli and Chad		ADB: Arif and Chad	
5-6			ADG: Arif and Chad	

3. Fill in the following answers on the Scantron form:

Equation sheet

Stress:
$$\sigma = \frac{dF}{dA}$$
 $\sigma_{ave} = \frac{F}{A}$ $\tau = \frac{dV}{dA}$ $\tau_{ave} = \frac{V}{A}$

Strain:
$$\epsilon = \frac{du}{dx}$$
 $\epsilon = \frac{\delta}{L_0}$ $\epsilon = \ln(\frac{L_f}{L_0})$ $\gamma = \frac{du}{dy}$ $\gamma = \frac{\Delta X}{Y}$

Mechanical Properties:
$$\sigma = E \epsilon$$
 $\tau = G \gamma$ $\nu = -\epsilon_{lat}/\epsilon_{long}$ $G = \frac{E}{2(1+\nu)}$ $\epsilon = \alpha \Delta T$

Geometric properties of area elements:
$$J = \int\limits_A \rho^2 dA$$
 $\bar{y} = \frac{\int\limits_A y dA}{A_{\text{total}}} = \frac{\sum\limits_A y_i A_i}{A_{\text{total}}}$ $I_x = \int\limits_A y^2 dA$ $Q = A' \bar{y}'$

Circle:
$$J = \frac{1}{2}\pi R^4$$
 $I_x = I_y = \frac{1}{4}\pi R^4 = \frac{1}{64}\pi D^4$

Semi-circle:
$$\bar{y} = \frac{4R}{3\pi}$$
 $I_x = I_y = \frac{1}{8}\pi r^4$

Rectangle:
$$I_x = \frac{1}{12}bh^3$$
 $I_y = \frac{1}{12}b^3h$

Parallel axis-theorem:
$$I_c = I_{c'} + A d_{cc'}^2$$

Axial loading:
$$\delta = \int\limits_{x=0}^{x=L} du$$
 $\delta = \int\limits_{x=0}^{x=L} \frac{F(x)dx}{E(x)A(x)}$ $\delta = \frac{FL}{EA}$ $\delta = \alpha L \Delta T$ $k = \frac{EA}{L} = \frac{1}{f}$

Torsion:
$$\phi = \int_{x=0}^{x=L} d\phi$$
 $\phi = \int_{x=0}^{x=L} \frac{T(x)dx}{G(x)J(x)}$ $\phi = \frac{TL}{GJ}$ $\tau = \frac{Tr}{J}$ $\gamma = \frac{d\phi}{dx}r$ $\gamma = \frac{\phi r}{L}$

Bending:
$$\frac{dV}{dx} = -w$$
 $\frac{dM}{dx} = V$ $\sigma_x = -\frac{M_z y}{I_z} + \frac{M_y z}{I_y}$ $\tau = \frac{VQ}{It}$ $q = \tau t = \frac{VQ}{I}$

Pressure vessels, thin walls: (cylinder)
$$\sigma_{\theta} = p_{t}^{r}$$
 $\sigma_{z} = \frac{1}{2}p_{t}^{r}$ (sphere) $\sigma_{1} = \sigma_{2} = \frac{1}{2}p_{t}^{r}$

Transformation of Plane-Stress:

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta)$$

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$$

Mohr's circle: (center):
$$\sigma_{ave} = \frac{\sigma_x + \sigma_y}{2}$$
 (radius): $R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + (\tau_{xy})^2}$

Principal stresses:
$$\sigma_1 = \sigma_{ave} + R$$
 $\sigma_2 = \sigma_{ave} - R$ $\tau = 0$ $\tan(2\theta_p) = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}$

Maximum in-plane shear stress:
$$\tau_{max} = R$$
 $\sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$ $\tan(2\theta_s) = -\frac{(\sigma_x - \sigma_y)/2}{\tau_{xy}}$

Tresca criterion:

$$|\sigma_1| = \sigma_Y, |\sigma_2| = \sigma_Y$$
 when σ_1, σ_2 have the same sign $|\sigma_1 - \sigma_2| = \sigma_Y$ when σ_1, σ_2 have opposite sign

Von-Mises criterion:
$$\sigma_1^2 - \sigma_1 \, \sigma_2 + \sigma_2^2 = \sigma_Y^2$$

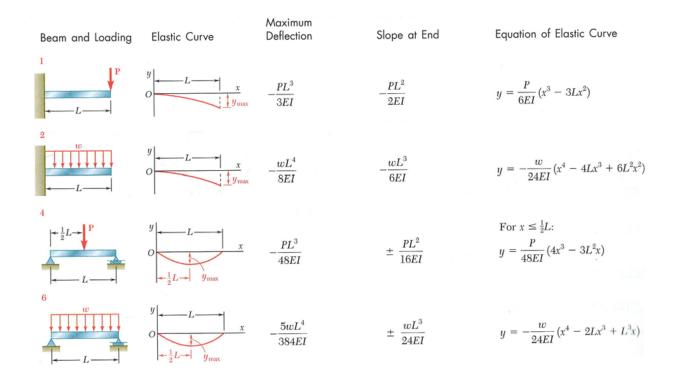
Generalized Hooke's law:
$$\epsilon_x = \frac{\sigma_x}{E} - \frac{\nu}{E}(\sigma_y + \sigma_z)$$
 $\epsilon_y = \frac{\sigma_y}{E} - \frac{\nu}{E}(\sigma_x + \sigma_z)$ $\epsilon_z = \frac{\sigma_z}{E} - \frac{\nu}{E}(\sigma_y + \sigma_x)$

Deflection: y'' = M/(EI)Buckling: $P_{cr} = \frac{\pi^2}{K^2} \frac{EI}{L^2}$

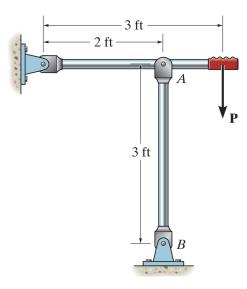
pinned-pinned: K = 1; pinned-fixed: K = 0.7

fixed-fixed: K = 0.5; fixed-free: K = 2

Figures

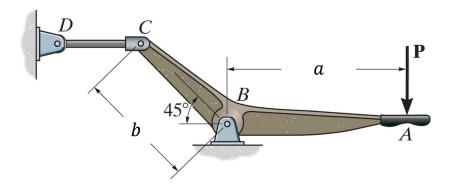


1. (1 point) Determine the maximum force P that can be applied to the rigid handle so that the steel control rod AB does not buckle. The rod has elastic modulus $E=29\times 10^3$ ksi, diameter d=1.25 in and is pinned at both ends.



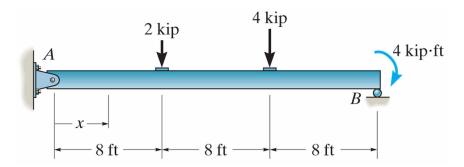
- (A) 9.8 kips
- (B) 17.6 kips
- (C) 12.1 kips
- (D) 4.6 kips

2. (1 point) A force P=1 kN is applied to the bell crank below. Determine the average shear stress developed in the 6-mm diameter double sheared pin at B. Assume a=450 mm and b=300 mm.



- (A) $\tau_{pin} = 41.5 \text{ MPa}$
- (B) $\tau_{pin} = 82.9 \text{ MPa}$
- (C) $\tau_{pin} = 35.4 \text{ MPa}$
- (D) $\tau_{pin} = 75.0 \text{ MPa}$

3. (1 point) Mark the CORRECT statement:



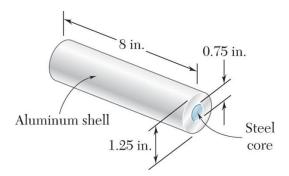
- (A) The moment at B is equal to zero
- (B) This is a statically indeterminate problem
- (C) The slope at B is equal to zero
- (D) The moment at A is equal to zero

4. (1 point) The spherical pressure vessel is subjected to an internal gage pressure p=90 psi. If the internal diameter of the tank is 30 in., and the wall thickness is 0.15 in., determine the maximum in-plane shear stress in the spherical vessel.



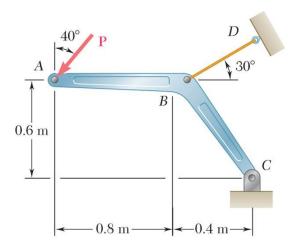
- (A) 4500 psi
- (B) 9000 psi
- (C) 0 psi
- (D) 2250 psi

5. (1 point) The assembly shown consists of an aluminum shell ($E_a=10.6\times10^6$ psi and $\alpha_a=12.9\times10^{-6}/^{o}\mathrm{F}$) fully bonded to a steel core ($E_s=29\times10^6$ psi and $\alpha_a=6.5\times10^{-6}/^{o}\mathrm{F}$) and is unstressed. Determine the change in length of the assembly when the temperature rises by $70^{o}\mathrm{F}$.



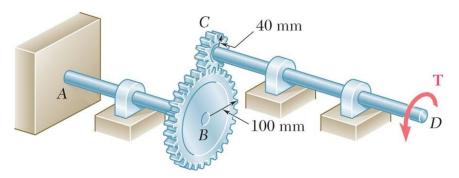
- (A) 0.005 in
- (B) 0.0025 in
- (C) 0.0075 in
- (D) 0.003 in

6. (1 point) Member ABC is rigid, pinned at C and supported by cable BD. Cable BD has ultimate stress $\sigma_u = 400$ MPa and was designed to support the load P = 16 kN as shown. Determine the minimum cross section area of the cable. Consider a factor of safety of 3 against cable failure.



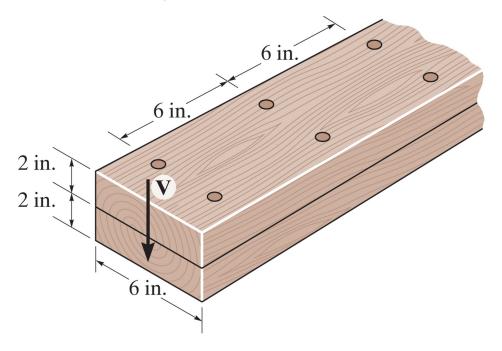
- (A) 218 mm^2
- (B) 188 mm^2
- (C) 109 mm^2
- (D) 342 mm^2

7. (1 point) In the system below, determine the reaction torque at the fixed end A when a torque T=200 N.m is applied at D.



- (A) Zero
- (B) 80 N.m
- $(\mathrm{C})~200~\mathrm{N.m}$
- (D) 500 N.m

8. (1 point) The beam is constructed from two boards fastened together at the top and bottom with two rows of nails spaced every 6 in. If an internal shear force of V = 600 lb is applied to the boards, determine the shear force resisted by each nail.



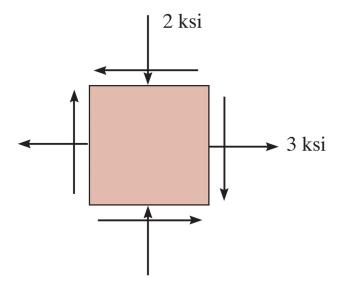
- (A) 900 lb
- (B) 337.5 lb
- (C) 1350 lb
- (D) 675 lb

9. (1 point) Cables AB and BC are used to suspend a lamp as illustrated below. Both cables are stress free before hanging the flowerpot and their original length is given by $L_{AB}=400$ mm and $L_{BC}=500$ mm. The weight of the lamp is P=2 kN. Both cables have diameter d=10 mm and are made with a material with elastic modulus E=70 GPa. Determine the normal strain in cable BC.



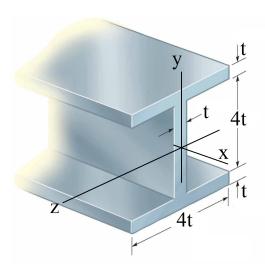
- (A) $\epsilon = 0.18 \times 10^{-3}$
- (B) $\epsilon = 0.14 \times 10^{-3}$
- (C) $\epsilon = 0.09 \times 10^{-3}$
- (D) $\epsilon = 0.29 \times 10^{-3}$

10. (1 point) For the element shown, determine the magnitude of the shear stress that gives a maximum in-plane shear stress equal to 3 ksi.



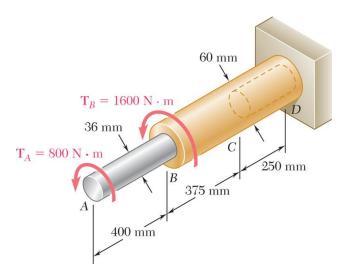
- (A) 9 ksi
- (B) 2.91 ksi
- (C) 1 ksi
- (D) 1.66 ksi

11. (1 point) Determine the moment of inertia I_z of the cross-section below with respect to the centroidal axis z. Use t=20 mm.



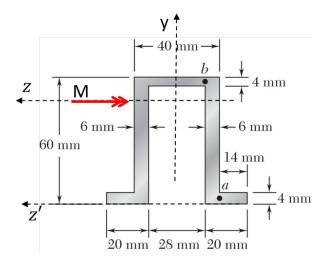
- (A) $I_z = 12.5 \times 10^6 \text{ mm}^4$
- (B) $I_z = 4.91 \times 10^6 \text{ mm}^4$
- (C) $I_z = 8.96 \times 10^6 \text{ mm}^4$
- (D) $I_z = 6.08 \times 10^6 \text{ mm}^4$

12. (1 point) The aluminum rod AB ($G_1 = 27$ GPa) is bonded to the brass rod BD ($G_2 = 39$ GPa). Knowing that portion CD of the brass rod is hollow and has inner diameter of 40 mm, determine the angle of twist at A.



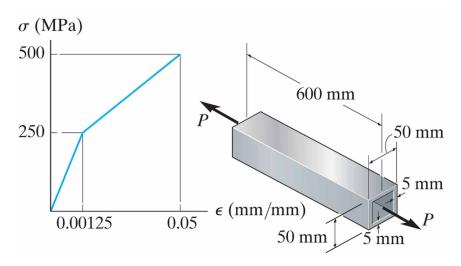
- (A) 0.0824 rad
- (B) 0.054 rad
- (C) 0.079 rad
- (D) 0.105 rad

13. (1 point) The centroid of the cross section below is located at $\bar{y}=30$ mm measured from the z'-axis. The moment of inertia with respect to the centroidal axis z is given by $I=0.39\times10^6$ mm⁴. Determine the maximum tensile stress when the indicated bending moment is applied. The magnitude of the moment is 400 N.m.



- (A) 30.7 MPa
- (B) 10.2 MPa
- (C) 28.7 MPa
- (D) 15.35 MPa

14. (1 point) The material for the hollow bar has the stress-strain diagram shown below. Consider the applied load P = 180 kN. Mark the correct statement:



- (A) The deformation in the rod is plastic, the yielding strength is 250 MPa and the rupture strength is 500 MPa
- (B) The deformation in the rod is elastic, the yielding strength is 250 MPa and the rupture strength is 500 MPa.
- (C) The deformation in the rod is elastic, the yielding strength is 250 MPa and the elastic modulus is 500 MPa.
- (D) The deformation in the rod is plastic, the yielding strength is 250 MPa and the elastic modulus is 500 MPa.

This page is intentionally left blank. $\,$

This page is intentionally left blank. $\,$

This page is intentionally left blank.

This page is intentionally left blank.

This page is intentionally left blank.