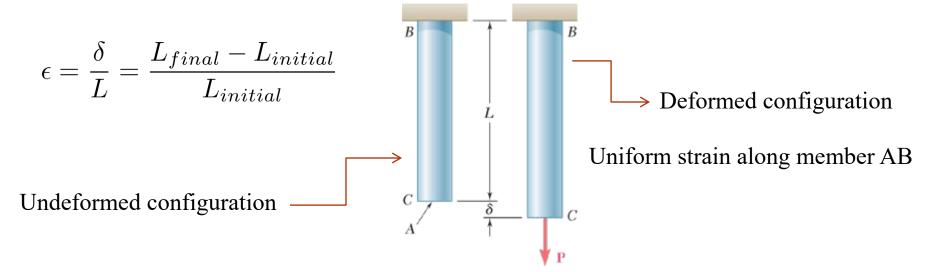

Chapter 2: Strain

Chapter Objectives

- ✓ Understand the concepts of normal and shear strain
- ✓ Apply the concept to determine the strain for various types of problems

DEFORMATION: change in length or shape of a body when forces are applied (or change in temperature)



Rubber membrane subject to tension

Extensional strain

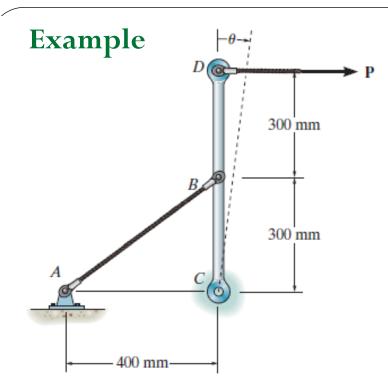
Change in length of a member divided by its original length (i.e., deformation per unit length)

Strain is dimensionless!

Recall point-wise definition of stress: $\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}$

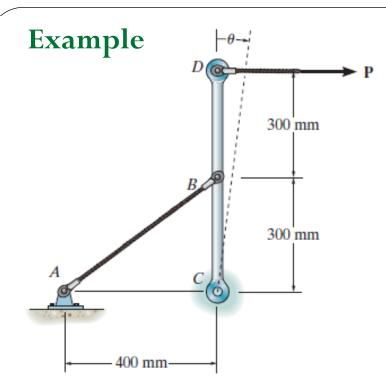
Similarly, we have a point-wise definition of strain: $\epsilon = \lim_{\Delta x \to 0} \frac{\Delta \delta}{\Delta x} = \frac{d\delta}{dx}$

True vs Engineering Strain


We just defined "engineering strain", $\epsilon = \frac{\delta}{L_i}$

"True strain" accounts for change in length of the bar as strain increases

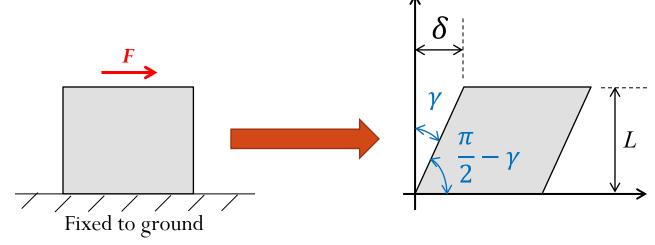
True vs Engineering Strain


For $L_i = 10$

δ	$\epsilon_{eng} = rac{\delta}{L_i}$	$\epsilon_{true} = ln\left(rac{L_f}{L_i} ight)$	Error
0.01	0.001	0.00099	0.05%
0.05	0.005	0.00498	0.25%
0.1	0.01	0.00995	0.5%
1	0.1	0.0953	4.9%
5	0.5	0.4054	23.3%

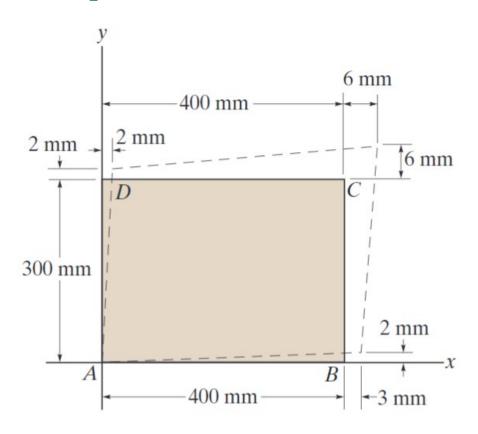
Part of a control linkage of an airplane consists of a rigid member CDB and a flexible cable AB. If a force is applied at the end D of the member and causes a normal strain in the cable of 0.0035 mm/mm, determine the displacement of point D. Originally the cable is unstretched.

Method 1: Trigonometry


Part of a control linkage of an airplane consists of a rigid member CDB and a flexible cable AB. If a force is applied at the end D of the member and causes a normal strain in the cable of 0.0035 mm/mm, determine the displacement of point D. Originally the cable is unstretched.

Method 2: Assume rotations are small

Shear Strain


Axial loads: change in length

Shear loads: change in angle/shape

Shear strain = Change in angle that was originally at 90 degrees $(\frac{\pi}{2})$ = γ (for now, we consider shear strain **magnitudes** only)

Example

The rectangular plate is deformed into the shape shown by the dashed lines.

Determine

- a) the average normal strain along diagonal BD
- b) the average shear strain at corner B

• Direct measurement:

- Initial and final lengths of some section of the specimen are measured, perhaps by some handheld device such as a ruler
- Axial strain computed directly by following formula:

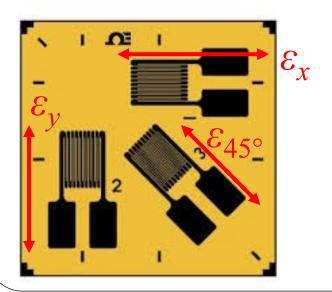
$$\epsilon = \frac{\delta}{L} = \frac{L_{final} - L_{initial}}{L_{initial}}$$

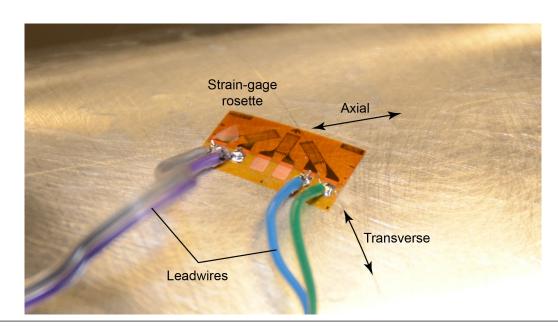
• Accurate measurements of strain in this way may require a fairly large initial length

• Contact Extensometer:

- A clip-on device that can measure very small deformations
- Two clips attach to a specimen before testing
- The clips are attached to a transducer body

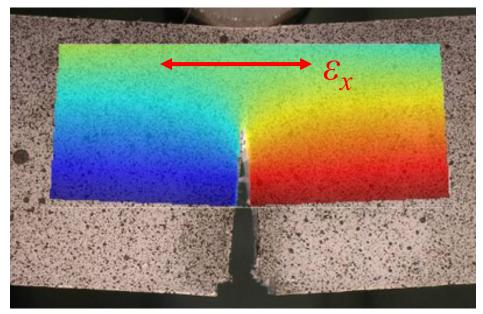
$$\epsilon = \frac{\delta}{L} = \frac{L_{final} - L_{initial}}{L_{initial}}$$


- The transducer outputs a voltage
- Changes in voltage output are converted to strain



A tensile test in the Materials Testing Instructional Laboratory, Talbot Lab, UIUC

- Strain gages
 - Small electrical resistors whose resistance changes with strain
 - Change in resistance can be converted to strain measurement
 - Often sold as "rosettes," which can measure normal strain in two or more directions
 - Can be bonded to test specimen



- Digital Image Correlation (DIC)
 - Image placed on surface of test specimen
 - Image may consist of speckles or some regular pattern
 - Deformation of image tracked by digital camera
 - Image analysis used to determine multiple strain components

DIC system analyzing a notch fracture test, from trilion.com

Strain field in a notch fracture test, as measured using DIC. From barthelat-lab.mcgill.ca