Chapter 9: Stress Transformation

Chapter Objectives

- ✓ Navigate between rectilinear coordinate systems for stress components
- ✓ Determine principal stresses and maximum in-plane shear stress
- ✓ Determine the absolute maximum shear stress in 2D and 3D cases

General stress state

The general state of stress at a point is characterized by

- three independent normal stress components σ_x , σ_y , and σ_z
- three independent shear stress components τ_{xy} , τ_{yz} , and τ_{xz}

At a given point, we can draw a stress element that shows the normal and shear stresses acting on the faces of a small (infinitesimal) cube of material surrounding the point of interest

Plane Stress

• Often, a loading situation involves only loads and constraints acting applied within a two-dimensional plane (e.g. the xy plane). In this case, any stresses acting in the third plane (z in this case) are equal to zero:

$$\sigma_z = \tau_{zx} = \tau_{zy} = 0$$

• Example:

Thin plates subject to forces acting in the mid-plane of the plate

Plane Stress Transformation

The stress tensor gives the normal and shear stresses acting on the faces of a cube (square in 2D) whose faces align with a particular coordinate system.

But, the <u>choice of coordinate system is arbitrary</u>. We are free to express the normal and shear stresses on any face we wish, not just faces aligned with a particular coordinate system.

Stress transformation equations give us a formula/methodology for taking known normal and shear stresses acting on faces in one coordinate system (e.g. x-y above) and converting them to normal and shear stresses on faces aligned with some other coordinate system (e.g. x'-y' above)

Plane Stress Transformation

- Sign convention:
 - ➤ Both the x-y and x'-y' system follow the right-hand rule
 - The orientation of an inclined plane (on which the normal and shear stress components are to be determined) will be defined using the angle θ . The angle θ is measured from the positive x to the positive x'-axis. It is positive if it follows the curl of the right-hand fingers.

For two-dimensional problems:

We use the following trigonometric relations...

$$\cos^{2}\theta = \frac{1 + \cos(2\theta)}{2} \qquad \sin(2\theta) = 2\sin\theta\cos\theta$$

$$\sin^{2}\theta = \frac{1 - \cos(2\theta)}{2} \qquad \cos(2\theta) = \cos^{2}\theta - \sin^{2}\theta$$

... to get

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$$

$$\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta)$$

Note that: σ_x , $+\sigma_y$, $=\sigma_x + \sigma_y$

Example 1: The state of plane stress at a point is represented by the element shown in the figure below. Determine the state of stress at the point on another element oriented 30° clockwise from the position shown.

$$\sigma_{x'} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\tau_{x'y'} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$$

$$\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta)$$

Principal Stresses

At what angle is the normal stress $\sigma_{x'}$ maximized/minimized? Start from:

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\tan(2\theta_p) = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$$

There are two roots (<u>that we care about</u>):

$$\theta_{p1}$$
 and $\theta_{p2} = \theta_{p1} + 90^{o}$

Principal Stresses

What are the maximum/minimum normal stress values (**the principal stresses**) associated with θ_{p1} and θ_{p2} ? Start from:

$$\sigma_{x'} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$

Fig. 9-8

Principal Stress Element

- Rotate original element by $heta_{p1} \Rightarrow ext{maximum}$ stress σ_1 occurs on face originally aligned with x axis
- The angle $\theta_{p2}=\theta_{p1}+90^o$ defines the orientation of the plane (face) on which the minimum stress σ_2 occurs

Original stress element

Rotate by $heta_{p1}$

Principal Stress Element

We always use the convention $\sigma_1 > \sigma_2$, i.e. σ_1 is the maximum stress and σ_2 is the minimum stress \rightarrow Note that it is possible that σ_2 is greatest in **absolute value**, i.e. consider $\sigma_1 = -10$ MPa and $\sigma_2 = -20$ MPa

<u>Important:</u> A principal stress element has **no shear stresses** acting on its faces!

 \rightarrow Try it yourself! Show that $\tau_{x'y'}(\theta_{p1}) = 0$

Original stress element

Principal stress element

Maximum shear stress

At what angle is the shear stress $\tau_{\chi'\gamma'}$ maximized? Start from:

$$\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin(2\theta) + \tau_{xy}\cos(2\theta)$$

$$\tan(2\theta_s) = \frac{-(\sigma_x - \sigma_y)}{2\tau_{xy}}$$

There are two roots (that we care about):

$$\theta_{s1}$$
 and $\theta_{s2} = \theta_{s1} + 90^{o}$

Maximum shear stress

What are the **maximum/minimum in-plane shear stress values** associated with θ_{s1} and θ_{s2} ? Plug in values of these angles into the expression for $\tau_{x'y'}$ to obtain

$$|\tau_{max}| = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \rightarrow \text{positive shear stress for } \theta_{s1}, \text{ negative shear stress for } \theta_{s2}$$

Rotate by θ_{s1}

Important: a maximum shear stress element has

- Maximum shear stress equal to value above acting on all 4 faces
- 1) A normal stress equal to $\frac{1}{2}(\sigma_x + \sigma_y)$ acting on all four of its faces, that is:

$$\sigma_{x'} = \sigma_{y'} = \sigma_{avg} = \frac{\sigma_x + \sigma_y}{2}$$

3) The orientations for principal stress element and max shear stress element **are 45**° **apart, i.e.**

$$\theta_s = \theta_p \pm 45^o$$

Mohr's circle: graphical representation of stress transformations

The equations for stress transformation actually describe a circle if we consider the normal stress $\sigma_{\chi'}$ to be the x-coordinate and the shear stress $\tau_{\chi' \chi'}$ to be the y-coordinate.

All points on the edge of the circle represent a possible state of stress for a particular coordinate system.

Rotating around the circle to a new set of coordinates an **angle 2** θ away from the original (X,Y) coordinate represents a stress transformation by **angle** θ

Circle center location:
$$C = \sigma_{avg} = \frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_1 + \sigma_2}{2}$$

Circle radius:
$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Point X: (σ_x, τ_{xy})

PointY: $(\sigma_y, -\tau_{xy})$

Mohr's circle: graphical representation of stress transformations

Circle center location:
$$C = \sigma_{avg} = \frac{\sigma_x + \sigma_y}{2} = \frac{\sigma_1 + \sigma_2}{2}$$

Circle radius:
$$R = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Point X: (σ_x, τ_{xy})

Point Y: $(\sigma_y, -\tau_{xy})$

Some questions:

Answer choice	Sign of σ_x for this circle	Sign of σ_y for this circle	Sign of $ au_{xy}$ for this circle	Point corresponding to σ_1	Point corresponding to σ_2	Point corresponding to $ au_{max}$
A	Pos.	Pos.	Pos.	Р	Р	Р
В	Neg.	Neg.	Neg.	Q	Q	Q
С	=0	=0	=0	S	S	S

Also: where are angles θ_{p1} , θ_{p2} , θ_{s} on the circle?

Example: For the state of plane stress shown

- a) Calculate the principal stresses and show them on Mohr's circle
- b) Calculate the maximum shear stress and label it on Mohr's circle
- c) Calculate the state of stress $(\sigma_{x'}, \sigma_{y'}, \tau_{x'y'})$ for a CCW rotation of $\theta = 60^o$; show this state on Mohr's circle
- d) Draw the principal and maximum shear stress elements

Example: When the torsional loading *T* is applied to the bar, it produces a state of pure shear stress in the material. Determine (a) the maximum in-plane shear stress and the associated average normal stress, and (b) the principal stress.

Example: When the axial loading *P* is applied to the bar, it produces a tensile stress in the material. Determine (a) the principal stress and (b) the maximum in-plane shear stress and associated average normal stress.

General (tri-axial) state of stress

- Three principal stresses
- Corresponding principal planes are mutually perpendicular
- No shear stress in the principal planes
- If we rotate the above element on the right about one principal direction, the corresponding stress transformation can be analyzed as plane stress.

Maximum absolute shear stress

Example: For the state of plane stress shown, determine (*a*) the principal planes and the principal stresses, (b) the maximum in-plane shear stress, (c) the absolute maximum shear stress

