next up previous
Next: About this document ... Up: Local Energy Calculation of Previous: Jastro correlation factor

Slater determinants

In this section, we explicity compute the gradient and Laplacian of the determinant of the trial wave function. In particular, we seek

\begin{displaymath}\nabla [\ln \det(A)],
\end{displaymath} (19)

where A is either the up or down matrix. To simplify the analysis, we will initially work again in terms of components. Let $\partial_i$ represent the derivative with respect to a single component of the 3N dimensional R. Trivially, then,

\begin{displaymath}\partial_i \ln[\det(A)] = \frac{1}{\det A} \partial_i \det (A)
\end{displaymath} (20)

At first glance, taking the derivative of a determinant appears a daunting task. Considerable simplification is possible with the following simple relation, which we state without proof:

\begin{displaymath}\partial_i \det(A) = \det(A) \,\text{Tr}\,[A^{-1} \partial_i A]
\end{displaymath} (21)

Then

 \begin{displaymath}\partial_i \ln [\det(A)] = \,\text{Tr}\,[A^{-1} \partial_i A]
\end{displaymath} (22)

Given this form, we are left with the calculation of the the elements of $\partial_i A$. The elements of A are just

\begin{displaymath}A_{kl} = \phi_k({\mathbf r}_l)
\end{displaymath} (23)

It is quite easy to see that the elements of the derivative matrix will be zero unless $i \in {x_l, y_l, z_l}$. Then the derivative matrix will have a single non-zero column. By taking advantage of symmetry, we can calculate the x, y, and z components simultaneously by directly calculating $\nabla_l \phi_k({\mathbf r}_l)$. If we make the substitution,

\begin{displaymath}\tilde{{\mathbf r}}\equiv {\mathbf r}_l - {\mathbf c}_k
\end{displaymath} (24)

then $\phi_k(\tilde{{\mathbf r}})$ will be radially symmetric in $\tilde{{\mathbf r}}$. Since these vector operators are translationally invariant,

\begin{displaymath}\nabla_{\tilde{{\mathbf r}}} = \nabla_{r_l}.
\end{displaymath} (25)

If we work in spherical coordinates, $\phi_k(\tilde{r}, \tilde{\theta},
\tilde{\phi})$ will be independent of $\tilde{\theta}$ and $\tilde{\phi}$. We can then express the gradient as

\begin{displaymath}\nabla_{\tilde{{\mathbf r}}} \phi_k(\tilde{{\mathbf r}}) = \partial_{\tilde{r}} \phi_k(\tilde{r})
\hat{\tilde{{\mathbf r}}},
\end{displaymath} (26)

where $\hat{\tilde{{\mathbf r}}}$ represent the unit vector in the direction of $\tilde{{\mathbf r}}$. Written in terms of $\tilde{{\mathbf r}}$, the orbitals take the form,

\begin{displaymath}\phi_k(\tilde{{\mathbf r}}) = \exp \left( \frac{ -\tilde{r}^2}{\omega_k^2 + \nu_k \tilde{r}}
\right)
\end{displaymath} (27)

The derivative takes the form
$\displaystyle \partial_{\tilde{r}} \phi_k(\tilde{r})$ = $\displaystyle \phi_k(\tilde{r}) \partial_{\tilde{r}} \left[
\frac{- \tilde{r}^2}{\omega_k^2 + \nu_k \tilde{r}}\right]$  
  = $\displaystyle \phi_k(\tilde{r}) \left[\frac{-2 \tilde{r}}{\omega_k^2 + \nu_k \tilde{r}} +
\frac{\nu_k \tilde{r}^2}{(\omega_k^2 + \nu_k \tilde{r})^2} \right]$  
  = $\displaystyle \phi_k(\tilde{r}) \left[\frac{-2\tilde{r}(\omega^2 + \nu_k \tilde{r}) + \nu_k \tilde{r}^2}
{(\omega_k^2 + \nu_k)^2} \right]$  
  = $\displaystyle \phi_k(\tilde{r}) \left[ \frac{ -\tilde{r}(2\omega_k^2 + \nu_k
\tilde{r})}{(\omega_k^2 + \nu_k \tilde{r})^2} \right]$ (28)

and furthermore,
$\displaystyle \nabla_{\tilde{{\mathbf r}}} \phi_k(\tilde{{\mathbf r}})$ = $\displaystyle \phi_k(\tilde{r}) \left[ \frac{ -\tilde{r}(2\omega_k^2 + \nu_k
\tilde{r})}{(\omega_k^2 + \nu_k \tilde{r})^2} \right] \hat{\tilde{{\mathbf r}}}$  
  = $\displaystyle \phi_k(\tilde{r}) \left[ \frac{ -\tilde{r}(2\omega_k^2 + \nu_k
\t...
...k \tilde{r})^2} \right] \left(\frac{{\mathbf r}-
{\mathbf c}}{\tilde{r}}\right)$  
  = $\displaystyle \phi_k(\tilde{r}) \left[ \frac{ -(2\omega_k^2 + \nu_k
\tilde{r})}{(\omega_k^2 + \nu_k \tilde{r})^2} \right] ({\mathbf r}- {\mathbf c}).$ (29)

The total Laplacian will be a sum of the Laplacian's with respect to each electronic coordinate, ri. Let i represent a particular component of the 3N dimensional vector, R, eg. the x component of r4. Then we have that

$\displaystyle \partial_i \ln [\det(A)]$ = $\displaystyle \,\text{Tr}\,[A^{-1} \partial_i A]$  
$\displaystyle \partial^2_i \ln [\det(A)]$ = $\displaystyle \partial_i \,\text{Tr}\,[A^{-1} \partial_i A]$  
  = $\displaystyle \,\text{Tr}\,[A^{-1} \partial^2_i A] + \,\text{Tr}\,[(\partial_i
A^{-1})(\partial_i A)]$ (30)

where $\partial^2_i A$ actually denotes the Laplacian of the components of the matrix A. For the latter term, we utilize the fundamental property of inverses,
A-1 A = 1  
$\displaystyle (\partial_i A^{-1})A + A^{-1} \partial_i A$ = 0  
$\displaystyle \partial_i A^{-1}$ = $\displaystyle - A^{-1} (\partial_i A) A^{-1}$ (31)

Using this new relation
$\displaystyle \partial_i^2 \ln[\det(A)]$ = $\displaystyle \,\text{Tr}\,[A^{-1} \partial^2_i A] -
\,\text{Tr}\,[A^{-1}(\partial_i A) A^{-1} (\partial_i A)]$  
  = $\displaystyle \,\text{Tr}\,[A^{-1} \partial^2_i A] - \,\text{Tr}\,[(A^{-1}(\partial_i A))^2]$ (32)

Now, to calculate the Laplacian with respect to rm, we sum over the three components, j, of the rm.

\begin{displaymath}\nabla^2_{{\mathbf r}_m} \ln[\det(A)] = \,\text{Tr}\,[A^{-1} ...
...,z\}} \,\text{Tr}\,[(A^{-1}(\partial_{{\mathbf r}_m^j} A))^2],
\end{displaymath} (33)

where rmj refers to the $j^{\text{th}}$ component of rm.

We already have the first derivative of A, which we found in the gradient part of the calculation. Next we calculate the Laplacian of the compoents of A. Specifically, we seek $\nabla_{{\mathbf r}_m}^2
A_{kl}$, where $A_{kl} = \phi_k({\mathbf r}{l})$. We have that

\begin{displaymath}\nabla_{{\mathbf r}_m}^2 A_{kl} = \delta_{lm} \nabla^2_{{\mathbf r}_l} \phi_k({\mathbf r}_{l})
\end{displaymath} (34)

What remains is the Laplacian of the molecular orbitals, $\phi_k$, with respect to rl. If we make the definition, ${\mathbf r}_{kl} \equiv
{\mathbf r}_l - {\mathbf c}_k$, we recognize that $\phi_k({\mathbf r}_{kl})$ will spherically symmetric. Differential operators are invariant under translations, so we simplify the calculation our calculation by exploiting this translational invariance


$\displaystyle \nabla_{{\mathbf r}_m}^2 A_{kl}$ = $\displaystyle \frac{1}{r_{kl}^2} \partial_{r_{kl}} r_{kl}^2
\partial_{r_{kl}} \phi_k(r_{kl})$  
  = $\displaystyle \frac{2}{r_{kl}}\partial_{r_{kl}} \phi_k(r_{kl}) + \partial^2_{r_{kl}} \phi(r_{kl})$ (35)

The first derivative of the molecular orbitals were computed earlier in this paper, so we finally turn to computing the second derivative of the $\phi_k$'s.

$\displaystyle \partial^2_{\tilde{r}} \phi_k(\tilde{r})$ = $\displaystyle \partial_{\tilde{r}}
\phi_k(\tilde{r}) \left[ \frac{ -\tilde{r}(2\omega_k^2 + \nu_k \tilde{r})}{(\omega_k^2 +
\nu_k \tilde{r})^2} \right]$  
  = $\displaystyle \left[ \frac{ -\tilde{r}(2\omega_k^2 + \nu_k \tilde{r})}{(\omega_...
...de{r}(2\omega_k^2 + \nu_k \tilde{r})}{(\omega_k^2 +
\nu_k \tilde{r})^2} \right]$  
  = $\displaystyle \phi_k(\tilde{r}) \frac{\left[\tilde{r}(2\omega_k^2 + \nu_k \tilde{r})\right]^2}{(\omega_k^2 + \nu_k \tilde{r})^4}$  
    $\displaystyle - 2 \phi_k(\tilde{r}) \left[\frac{(\omega_k^2 + \nu_k \tilde{r})^...
...de{r})(2\omega_k^2 + \nu_k \tilde{r})}{(\omega_k^2 + \nu_k \tilde{r})^4}\right]$ (36)


next up previous
Next: About this document ... Up: Local Energy Calculation of Previous: Jastro correlation factor
Nichols A. Romero
1999-12-17