next up previous
Next: Slater determinants Up: Local Energy Calculation of Previous: Local Energy

Jastro correlation factor

In this section we explicity compute the gradient and Laplacian of the the corellation factor. We begin by calculating the gradient terms. Note that R is a 3N dimensional vector, so that the gradient with respect to R will have 3N components. For clarity, the 3Ndimensional vector will be represented by N 3-dimensional vectors, $\{{\mathbf r}_i\}$. The $i^{\text{th}}$ component of the gradient is simply

\begin{displaymath}\nabla_i = \frac{\partial}{\partial x_i} \hat{x_i} +
\frac{\p...
...tial y_i} \hat{y_i} + \frac{\partial}{\partial
z_i} \hat{z_i}
\end{displaymath} (11)

We will explicity calculate the xi component and symmetry considerations will give us the remainder. We begin by expanding the notation in our expression for Uij.

\begin{displaymath}U_{ij}({\mathbf R}) = \sum_{i<j} \frac{a_{ij} \left[(x_i - x_...
... - x_j)^2 +
(y_i - y_j)^2+ (z_i - z_j)^2\right]^{\frac{1}{2}}}
\end{displaymath} (12)

Since the summation is given for i<j, to calculate the $i^{\text{th}}$component, we will need to sum over the remaining j's.
 
$\displaystyle (\nabla_i)_x \sum_{i<j} U_{ij}$ = $\displaystyle \sum_{i<j}\partial_{x_i} \left[\frac{a_{ij} \left[(x_i - x_j)^2 +...
...left[(x_i - x_j)^2 +
(y_i - y_j)^2+ (z_i - z_j)^2\right]^{\frac{1}{2}}} \right]$  
  = $\displaystyle \sum_{i<j} \left[ \frac{a_{ij} r_{ij}^{-1}(x_i - x_j)}{1 +
b_{ij}r_{ij}} - \frac{a_{ij} b_{ij}(x_i - x_j)}{(1 +
b_{ij} r_{ij})^2}
\right]$  
  = $\displaystyle \sum_{i<j} \left[ \frac{a_{ij}}{1 + b_{ij}r_{ij}} \left(r_{ij}^{-1} -
\frac{b_{ij}}{1 + b_{ij}r_{ij}} \right)(x_i - x_j) \right]$  
  = $\displaystyle \sum_{i<j} \left[ \frac{a_{ij}}{1 + b_{ij}r_{ij}} \left(\frac{r_{ij}^{-1} +
b_{ij} - b_{ij}}{1 + b_{ij}r_{ij}}\right)(x_i - x_j) \right]$  
  = $\displaystyle \sum_{i<j} \left[\frac{a_{ij}}{r_{ij}(1 + b_{ij}r_{ij})^2} (x_i
- x_j) \right]$ (13)

With the form for the x component, we can generalize the calculation to the $i^{\text{th}}$ component of the gradient.

\begin{displaymath}\nabla_i \sum_{i<j} U_{ij} = \sum_{i<j}
\frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^2} ({\mathbf r}_i - {\mathbf r}_j)
\end{displaymath} (14)

For each gradient term $\nabla_{{\mathbf r}_i}$ we need to to sum over all $j
\neq i$.

Now we move on to the Laplacian. We begin by expanding out (13).

\begin{displaymath}(\nabla_i)_x \sum_{i<j} U_{ij} = \sum_{i<j} \frac{a_{ij}(x_i ...
...}[(x_i-x_j)^2 +
y_{ij}^2 + z_{ij}^2]^{\frac{1}{2}} \right\}^2}
\end{displaymath} (15)

This calculation is quite involved, so we begin by taking the derivative of the denominator.
$\displaystyle \partial_{x_i} \ \mathrm{denom}$ = rij-1(1+bijrij)2(xi - xj) + 2 bij(1 + bijrij)(xi - xj)  
  = (1 + bij)(rij-1 + 3 bij)(xi - xj) (16)

With this derivative, we can compute the full second derivative.
$\displaystyle \partial^2_{x_i} U_{ij}$ = $\displaystyle \frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^2} -
\frac{(1 + b_{ij}r_{ij})(r_{ij}^{-1} + 3b_{ij})(x_i - x_j)^2
a_{ij}}{r_{ij}^2(1 + b_{ij}r_{ij})^4}$  
  = $\displaystyle \frac{a_{ij}}{r_{ij}(1 + b_{ij}{r_ij})^2} \left[ 1 -
\frac{(r_{ij}^{-1} + 3b_{ij})(x_i - x_j)^2}{r_{ij}(1 + b_{ij}r_{ij})}
\right]$ (17)

Now, we may sum over components to generate the Laplacian with respect to ri. This summation changes the 1 in brackets to a 3 and the (xi - xj)2 to rij2.
$\displaystyle \nabla_i^2 U_{ij}$ = $\displaystyle \frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^2} \left[ 3 -
\frac{(r_{ij}^{-1} + 3b_{ij})r_{ij}^2}{r_{ij}(1 +
b_{ij}r_{ij})}\right]$  
  = $\displaystyle \frac{a_{ij}}{r_{ij}(1+b_{ij}r_{ij})^2} \left[\frac{3 + 3
b_{ij}r_{ij} - 1 - 3b_{ij}r_{ij}}{1 + b_{ij}r_{ij}} \right]$  
  = $\displaystyle \frac{2 a_{ij}}{r_{ij}(1 + b_{ij}r_{ij})^3}$ (18)

We remember that we must sum over all $i \neq j$ to calculate the full Laplacian.


next up previous
Next: Slater determinants Up: Local Energy Calculation of Previous: Local Energy
Nichols A. Romero
1999-12-17