next up previous
Next: Jastro correlation factor Up: Local Energy Calculation of Previous: Slater-Jastrow wave function

Local Energy

We wish to compute the local energy of the wave function, defined by

\begin{displaymath}E_{\text{local}} \equiv \frac{\hat{H} \Psi_T }{\Psi_T},
\end{displaymath} (6)

where

\begin{displaymath}\hat{H} \equiv \frac{\hbar^2}{2m}\nabla^2 + V
\end{displaymath} (7)

The calculation of the potential energy V is straightforward. Therefore, we will focus here the application of the Laplacian operator to the Jastrow wave function. Given the form of the trial wave function, it will prove convenient to define
 
$\displaystyle {\mathcal L}_T$ = $\displaystyle \ln (\Psi_T)$  
  = $\displaystyle \ln (\det(A^{\text{up}})) + \ln (\det(A_{\text{down}})) +
\sum_{i<j} U_{ij}$ (8)

We now attempt to calculation the action of $\nabla^2$ on $\Psi_T$ in terms of ${\mathcal L}_T$.

$\displaystyle \nabla^2 \Psi_T({\mathbf R})$ = $\displaystyle \nabla^2\exp({\mathcal L}_T({\mathbf R}))$  
  = $\displaystyle \nabla \cdot \nabla (\exp({\mathcal L}_T({\mathbf R})))$  
  = $\displaystyle \nabla \cdot \left[ \exp({\mathcal L}_T({\mathbf R})) \nabla
{\mathcal L}_T({\mathbf R})\right]$  
  = $\displaystyle \nabla^2 {\mathcal L}_T({\mathbf R}) \exp({\mathcal L}_T({\mathbf...
...+ (\nabla
{\mathcal L}_T({\mathbf R})) \nabla \exp({\mathcal L}_T({\mathbf R}))$  
  = $\displaystyle \left[ \nabla^2 {\mathcal L}_T({\mathbf R}) + (\nabla {\mathcal L}_T({\mathbf R}))^2 \right]
\psi_T( {\mathbf R})$ (9)

This leaves a particularly simple form for the local energy.

\begin{displaymath}E_{\text{local}}({\mathbf R}) = \frac{- \hbar^2}{2m} \left[ \...
... \nabla {\mathcal L}_T({\mathbf R}))^2\right] + V({\mathbf R})
\end{displaymath} (10)

Now, we are left with the task of computing $\nabla {\mathcal L}_T$ and $\nabla^2 {\mathcal L}_T$.

The gradient and Laplacian are linear operators, using (8), we can find action of these operators on each of the terms in the sum.


next up previous
Next: Jastro correlation factor Up: Local Energy Calculation of Previous: Slater-Jastrow wave function
Nichols A. Romero
1999-12-17