next up previous
Next: Local Energy Up: Local Energy Calculation of Previous: Local Energy Calculation of

Slater-Jastrow wave function

This short paper summarizes the local energy calculation problem of the calculation of the Slater-Jastrow wave function. This wave function has number of desirable properties for many-body quantum Monte-Carlo calculations of electrons in the presence of ions.

The Slater-Jastrow wave function is a product of Slater determinants and the Jastrow correlation factor:

 \begin{displaymath}\Psi_T(\{{\mathbf r}_i\}) = \det(A^{\text{up}}) \det(A_{\text{down}})
\exp\left(\sum_{i<j} U_{ij} \right)
\end{displaymath} (1)

Here, the $A^{\text{up}}$ and $A^{\text{down}}$ are defined as the Slater matrices of the single particle up and down orbitals, respectively. That is

\begin{displaymath}A = \left[
\begin{array}{ccccl}
\phi_1({\mathbf r}_1) & \phi...
...\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{displaymath} (2)

Where $\phi_k$ are molecular orbitals centered at ck:

\begin{displaymath}\phi_k({\mathbf r}) = \exp \left(\frac{-({\mathbf r}- {\mathb...
...mega_k^2 +
\nu_k \vert {\mathbf r}- {\mathbf c}_k\vert}\right)
\end{displaymath} (3)

The Jastrow correlation factor Uij terms are defined in the following manner:

\begin{displaymath}U_{ij} = \frac{a_{ij} r_{ij}}{1 + b_{ij} r_{ij}},
\end{displaymath} (4)

where $r_{ij}\equiv \vert{\mathbf r}_i - {\mathbf r}_j\vert$ and
$\displaystyle a_{ij} = \left\{
\begin{array}{cl}
e^2/8D & \text{if $ij$\space a...
...\\
e^2/2D & \text{if $ij$\space are electron-nuclear pairs}
\end{array}\right.$     (5)

This trial wave function (1) has a number of desirable properties:

1.
The corerct cusp conditions for both like and unlike electron spins.
2.
The coorect cusp behavior as the electron-nuclear separation becomes small.
3.
The variational parameters in (1) have a simple physical interpretation at large separations.
(a)
$\beta$ can be related to the polarizability of a molecule
(b)
$\nu^\ast$ the maximum value of $\nu$ is equal to $1/\sqrt{2I}$where I is the first ionization potential.


next up previous
Next: Local Energy Up: Local Energy Calculation of Previous: Local Energy Calculation of
Nichols A. Romero
1999-12-17