Calendar

Week Monday Tuesday Wednesday Thursday Friday
1/15
First class meeting 4:00p - 5:50p ECEB 1002
1/22
Second class meeting 4:00p - 5:50p ECEB 1002
CAD assignment due 11:59p
1/29
Add/Drop Deadline due 11:59p
Third class meeting 4:00p - 5:50p ECEB 1002
Project approval due 11:59p
2/5
First team meetings with TAs 4:00p ECEB 2015/3015
Proposals due 11:59p
Initial Conversation With Machine Shop (required if using the shop) due 4:00p ECEB 1047
Team Contract due 11:59p
2/12
2/19
Design Document due 11:59p
Proposal Regrade due 11:59p
2/26
Design Review 8:00a - 6:00p With Instructor and TAs
Design Review
Fliflet: ECEB 2070
Design Review
Schuh: ECEB 2072
Design Review
Gruev: ECEB 2074
Design Review 8:00a - 4:00p With Instructor and TAs
Design Review
Fliflet: ECEB 2070
Design Review
Schuh: ECEB 2072
Design Review
Gruev: ECEB 2074
Design Review 8:00a With Instructor and TAs
Design Review
Fliflet: ECEB 2070
Design Review
Schuh: ECEB 2072
Design Review
Gruev: ECEB 2074
PCB Review 3:00p - 5:00p ECEB 3081
3/4
Last day for revisions to the machine shop due ECEB 1048
3/11
Spring Break
Spring Break
Spring Break
Spring Break
Spring Break
3/18
3/25
Design Doc Regrade due 11:59p
4/1
4/8
4/15
Mock demo During weekly TA mtg
Mock demo During weekly TA mtg
Mock demo During weekly TA mtg
Mock demo During weekly TA mtg
Mock demo During weekly TA mtg
4/22
Final Demo With Instructor and TAs
Demonstration
Fliflet: ECEB 2070
Final Demo With Instructor and TAs
Demonstration
Schuh: ECEB 2072
Demonstration
Gruev: ECEB 2074
Final Demo With Instructor and TAs
Demonstration
Schuh: ECEB 2072
Demonstration
Gruev: ECEB 2074
Mock Presentation With Comm and ECE TAs
Demonstration
Fliflet: ECEB 2070
Mock Presentation With Comm and ECE TAs
Extra Credit Video Assignment due 11:59p
Demonstration
Fliflet: ECEB 2070
4/29
Final Presentation With instructor and TAs
Presentation
Fliflet: ECEB 2070
Presentation
Schuh: ECEB 2072
Presentation
Gruev: ECEB 2074
Final Presentation With Instructor and TAs
Presentation
Fliflet: ECEB 2070
Presentation
Schuh: ECEB 2072
Presentation
Gruev: ECEB 2074
Final papers due 11:59p
Lab checkout 3:00p - 4:30p With TA
Award Ceremony 4:30p - 5:30p Grainger Auditorium
Lab Notebook Due due 11:59p

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos