Grading Scheme :: ECE 445 - Senior Design Laboratory

Grading Scheme

 

The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Initial Post Individual 5  
Lab Notebook Individual 50 PDF
Lab Safety Training Individual Lab Access  
CAD Assignment Individual 10 PDF
Soldering Assignment Individual 10
Request for Approval Team 5  
Weekly TA Meetings      
Project Proposal Team 25 PDF
Team Contract Team 10  
Design Document
Requirements and Verification
Team 40 PDF
Breadboard Demo * Team 20 PDF
Board Review      
Individual Progress Report Individual 25
Mock Demo Individual 5  
Mock Presentation Individual 5  
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Checkout     PDF
Contract Fulfillment Team 20  
Continuing your project   Priceless  

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

Tesla Coil Guitar Amp

David Mengel, Griffin Rzonca

Featured Project

# Tesla Coil Guitar Amp

Team Members:

* Griffin Rzonca (grzonca2)

* David Mengel (dmengel3)

# Problem:

Musicians are known for their affinity for flashy and creative displays and playing styles, especially during their live performances. One of the best ways to foster this creativity and allow artists to express themselves is a new type of amp that is both visually stunning and sonically interesting.

# Solution:

We propose a guitar amp that uses a Tesla coil to create a unique tone and dazzling visuals to go along with it. The amp will take the input from an electric guitar and use this to change the frequency of a tesla coil's sparks onto a grounding rod, creating a tone that matches that of the guitar.

# Solution Components:

## Audio Input and Frequency Processing -

This will convert the output of the guitar into a square wave to be fed as a driver for the tesla coil. This can be done using a network of op-amps. We will also use an LED and phototransistor to separate the user from the rest of the circuit, so that they have no direct connection to any high voltage circuitry. In order to operate our tesla coil, we need to drive it at its resonant frequency. Initial calculations and research have this value somewhere around 100kHz. The ESP32 microcontroller can create up to 40MHz, so we will use this to drive our circuit. In order to output different notes, we will use pulses of the resonant frequency, with the pulses at the frequency of the desired note.

## Solid-state switching -

We will use semiconductor switching rather than the comparably popular air-gap switching, as this poses less of a safety issue and is more reliable and modifiable. We will use a microcontroller, an ESP 32, to control an IR2110 gate driver IC and two to four IGBTs held high or low in order to complete the circuit as the coil triggers, acting in place of the air gap switch. These can all be included on our PCB.

## Power Supply -

We will use a 120V AC input to power the tesla coil and most likely a neon sign transformer if needed to step up the voltage to power our coil.

## Tesla Coil -

Consists of a few wire loops on the primary side and a 100-turn coil of copper wire in order to step up voltage for spark generation. Will also require a toroidal loop of PVC wrapped in aluminum foil in order to properly shape the electric field for optimal arcing. These pieces can be modular for easy storage and transport.

## Grounding rod -

All sparks will be directed onto a grounded metal rod 3-5cm from the coil. The rest of the circuit will use a separate neutral to further protect against damage. If underground cable concerns exist, we can call an Ameren inspector when we test the coil to mark any buried cables to ensure our grounding rod is placed in a safe location.

## Safety -

Tesla coils have been built for senior design in the past, and as noted by TAs, there are several safety precautions needed for this project to work. We reviewed guidelines from dozens of recorded tesla coil builds and determined the following precautions:

* The tesla coil will never be turned on indoors, it will be tested outside with multiple group members present using an outdoor wall outlet, with cones to create a circle of safety to keep bystanders away.

* We will keep everyone at least 10ft away while the coil is active.

* The voltage can reach up to 100kV (albeit low current) so all sparks will be directed onto a grounding rod 3-5cm away, as a general rule of thumb is each 30kV can bridge a 1cm gap.

* The power supply (120-240V) components will be built and tested in the power electronics lab.

* The coil will have an emergency stop button and a fuse at the power supply.

* The cable from the guitar will use a phototransistor so that the user is not connected to a circuit with any power electronics.

# Criterion for Success:

To consider this project successful, we would like to see:

* No safety violations or injuries.

* A tesla coil that produces small visible and audible 3-5cm sparks to our ground rod.

* The coil can play several different notes and tones.

* The coil can take input from the guitar and will play the corresponding notes.

Project Videos