Project

# Title Team Members TA Documents Sponsor
64 FPV Racing Drone
Eli O'Malley
Griffin Descant
Hunter Baisden
Tianxiang Zheng design_document1.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation1.pdf
proposal1.pdf
video
# FPV Racing Drone

Team members:
- Elias O'Malley (eliasco2)
- Hunter Baisden (baisden2)
- Griffin Descant (descant2)

# Problem
FPV Racing drones are usually very large and fast and thus require a large space. The Center for Autonomy Labs has a flying arena for lightweight drones such as the Crazyflie. However, the Crazyflie do not have a first person view.

# Solution
We propose to develop a small, lightweight FPV system for the Crazyflie in order to facilitate lightweight, small-space drone racing.

# Solution Components
## Power system
The system will draw power from the Crazyflie and use regulators to power each of the subsystems.

## Camera
A lightweight camera will be used to capture video from the drone.

## Transmitter/Receiver
A video transmitter on the drone will stream the video from the camera to a receiver connected to the headset.

## Video Processor
Microprocessors on the drone and at the receiving end will convert the camera data for transmitting and the received data back to video for the headset.

## IF LED Array
In order to track the location of the drone for the purpose of racing analytics, an infrared LED array will be attached to the drone to display a programmable pattern. This would allow the simultaneous tracking and differentiation of multiple drones in the future. This will be tracked using the labs Vicon motion tracking system.

# Criterion for Success
1 – The Vicon motion system should successfully track the drone using the IF LED array.

2 - The headset should receive a video stream of at least 30Hz.

3 – The Crazyflie should be able to maintain flight for 3 mins with the system running.

Cloud-controlled quadcopter

Anuraag Vankayala, Amrutha Vasili

Cloud-controlled quadcopter

Featured Project

Idea:

To build a GPS-assisted, cloud-controlled quadcopter, for consumer-friendly aerial photography.

Design/Build:

We will be building a quad from the frame up. The four motors will each have electronic speed controllers,to balance and handle control inputs received from an 8-bit microcontroller(AP),required for its flight. The firmware will be tweaked slightly to allow flight modes that our project specifically requires. A companion computer such as the Erle Brain will be connected to the AP and to the cloud(EC2). We will build a codebase for the flight controller to navigate the quad. This would involve sending messages as per the MAVLink spec for sUAS between the companion computer and the AP to poll sensor data , voltage information , etc. The companion computer will also talk to the cloud via a UDP port to receive requests and process them via our code. Users make requests for media capture via a phone app that talks to the cloud via an internet connection.

Why is it worth doing:

There is currently no consumer-friendly solution that provides or lets anyone capture aerial photographs of them/their family/a nearby event via a simple tap on a phone. In fact, present day off-the-shelf alternatives offer relatively expensive solutions that require owning and carrying bulky equipment such as the quads/remotes. Our idea allows for safe and responsible use of drones as our proposed solution is autonomous, has several safety features, is context aware(terrain information , no fly zones , NOTAMs , etc.) and integrates with the federal airspace seamlessly.

End Product:

Quads that are ready for the connected world and are capable to fly autonomously, from the user standpoint, and can perform maneuvers safely with a very simplistic UI for the common user. Specifically, quads which are deployed on user's demand, without the hassle of ownership.

Similar products and comparison:

Current solutions include RTF (ready to fly) quads such as the DJI Phantom and the Kickstarter project, Lily,that are heavily user-dependent or user-centric.The Phantom requires you to carry a bulky remote with multiple antennas. Moreover,the flight radius could be reduced by interference from nearby conditions.Lily requires the user to carry a tracking device on them. You can not have Lily shoot a subject that is not you. Lily can have a maximum altitude of 15 m above you and that is below the tree line,prone to crashes.

Our solution differs in several ways.Our solution intends to be location and/or event-centric. We propose that the users need not own quads and user can capture a moment with a phone.As long as any of the users are in the service area and the weather conditions are permissible, safety and knowledge of controlling the quad are all abstracted. The only question left to the user is what should be in the picture at a given time.

Project Videos