For this study, molecular dynamics simulations were performed to determine local configuration dependent migration energies using the selected interatomic potentials.
|
|
Since varying the Region I and Region II sizes strongly affects the defect energy calculation, it is important to be sure that the these sizes are chosen correctly. As the region sizes increase, the approximates made will become increasingly valid, but at the same time the computational cost will increase substantially. It is important to find a compromise between these two, as region sizes much be large enough that the defect energies are converged, but small enough to be computed in a reasonable amount of time. To find the best region sizes, the defect minimum and saddle point energies were calculated with varying region sizes in the two extreme dopant cases: will no nearest neighbor lanthanum dopant ions and with all six nearest neighbor dopant ions. These simulations were performed by Dr. Di Yun, using yttrium as the dopant, but the results are transferable to other dopant cases. The results of these simulations are given in Table 3.1. These results show that defect energy drops with increasing region sizes, as long as the region size is small. After the region sizes reach 12Å-25Å, the energies converge to reasonably stably values and stay stable for further region size increases. The results also show that the oxygen vacancy migration energies become stable above region sizes of 12Å-25Å. Increasing the Region I size from 12Å to 13Å resulted in an almost 43% increase in computational time, so the final region sizes of 12Å-25Å were selected for calculating the migration energies.
Sizes | Defect energy | Migration Energy | ||||
no dopant | 6 dopants | |||||
minimum | saddle | minimum | saddle | no dopant | 6 dopants | |
9-21 | 15.5 | 15.864 | 214.627 | 215.361 | 0.364 | 0.7338 |
10-23 | 15.488 | 15.8462 | 214.569 | 215.304 | 0.3582 | 0.7351 |
11-24 | 15.4737 | 15.8273 | 214.553 | 215.293 | 0.3536 | 0.7393 |
12-25 | 15.4695 | 15.8209 | 214.522 | 215.262 | 0.3514 | 0.7395 |
13-30 | 15.4654 | 15.8165 | 214.513 | 215.252 | 0.3511 | 0.7386 |
14-31 | 15.4616 | 15.8136 | 214.501 | 215.238 | 0.352 | 0.7372 |
15-33 | 15.4623 | 15.8114 | 214.498 | 215.237 | 0.3491 | 0.7389 |
16-35 | 15.4624 | 15.8168 | 214.495 | 215.236 | 0.3544 | 0.7409 |
1 | 2 | 3 | 4 | 5 | 6 | Gotte [22] | Minervini [7] | Sayle [23] |
Ce | Ce | Ce | Ce | Ce | Ce | 0.3276 | 0.3063 | 0.7489 |
La | Ce | Ce | Ce | Ce | Ce | 0.1477 | 0.1278 | 0.5366 |
Ce | La | Ce | Ce | Ce | Ce | 0.1477 | 0.1278 | 0.5366 |
Ce | Ce | La | Ce | Ce | Ce | 1.0259 | 1.1403 | 1.4723 |
Ce | Ce | Ce | La | Ce | Ce | 1.0259 | 1.1403 | 1.4723 |
Ce | Ce | Ce | Ce | La | Ce | 0.5232 | 0.3758 | 0.6324 |
Ce | Ce | Ce | Ce | Ce | La | 0.5232 | 0.3758 | 0.6324 |
La | La | Ce | Ce | Ce | Ce | 0.0666 | 0.0928 | 0.1889 |
La | Ce | La | Ce | Ce | Ce | 0.7812 | 0.9167 | 1.4425 |
La | Ce | Ce | La | Ce | Ce | 0.7812 | 0.9167 | 1.4425 |
La | Ce | Ce | Ce | La | Ce | 0.3461 | 0.1885 | 0.4775 |
La | Ce | Ce | Ce | Ce | La | 0.3444 | 0.2181 | 0.8875 |
Ce | La | La | Ce | Ce | Ce | 0.7812 | 0.9167 | 1.4425 |
Ce | La | Ce | La | Ce | Ce | 0.7812 | 0.9167 | 1.4425 |
Ce | La | Ce | Ce | La | Ce | 0.3444 | 0.2181 | 0.8875 |
Ce | La | Ce | Ce | Ce | La | 0.3461 | 0.1885 | 0.4775 |
Ce | Ce | La | La | Ce | Ce | 1.789 | 2.1444 | 1.0307 |
Ce | Ce | La | Ce | La | Ce | 1.193 | 1.1141 | 2.231 |
Ce | Ce | La | Ce | Ce | La | 1.193 | 1.1141 | 2.231 |
Ce | Ce | Ce | La | La | Ce | 1.193 | 1.1141 | 2.231 |
Ce | Ce | Ce | La | Ce | La | 1.193 | 1.1141 | 2.231 |
Ce | Ce | Ce | Ce | La | La | 0.7604 | 0.4723 | 1.0875 |
La | La | La | Ce | Ce | Ce | 0.487 | 0.6244 | 0.8691 |
La | La | Ce | La | Ce | Ce | 0.487 | 0.6244 | 0.8691 |
La | La | Ce | Ce | La | Ce | 0.1307 | 0.1646 | 0.2703 |
La | La | Ce | Ce | Ce | La | 0.1307 | 0.1646 | 0.2703 |
La | Ce | La | La | Ce | Ce | 1.4549 | 1.8173 | 1.7113 |
La | Ce | La | Ce | La | Ce | 0.9503 | 0.8765 | 1.0021 |
La | Ce | La | Ce | Ce | La | 0.9539 | 0.9127 | 1.0109 |
La | Ce | Ce | La | La | Ce | 0.9503 | 0.8765 | 1.0021 |
La | Ce | Ce | La | Ce | La | 0.9539 | 0.9127 | 1.0109 |
La | Ce | Ce | Ce | La | La | 0.5811 | 0.2754 | 0.4875 |
Ce | La | La | La | Ce | Ce | 1.4549 | 1.8173 | 1.7113 |
Ce | La | La | Ce | La | Ce | 0.9539 | 0.9127 | 1.0109 |
Ce | La | La | Ce | Ce | La | 0.9503 | 0.8765 | 1.0021 |
Ce | La | Ce | La | La | Ce | 0.9539 | 0.9127 | 1.0109 |
Ce | La | Ce | La | Ce | La | 0.9503 | 0.8765 | 1.0021 |
Ce | La | Ce | Ce | La | La | 0.5811 | 0.2754 | 0.4875 |
Ce | Ce | La | La | La | Ce | 1.8705 | 1.949 | 1.9202 |
Ce | Ce | La | La | Ce | La | 1.8705 | 1.949 | 1.9202 |
Ce | Ce | La | Ce | La | La | 1.3835 | 1.0907 | 1.3448 |
Ce | Ce | Ce | La | La | La | 1.3835 | 1.0907 | 1.3448 |
La | La | La | La | Ce | Ce | 1.0656 | 1.4646 | 1.3181 |
La | La | La | Ce | La | Ce | 0.6648 | 0.6118 | 0.7476 |
La | La | La | Ce | Ce | La | 0.6648 | 0.6118 | 0.7476 |
La | La | Ce | La | La | Ce | 0.6648 | 0.6118 | 0.7476 |
La | La | Ce | La | Ce | La | 0.6648 | 0.6118 | 0.7476 |
La | La | Ce | Ce | La | La | 0.3634 | 0.1166 | 0.3282 |
La | Ce | La | La | La | Ce | 1.559 | 1.6416 | 1.4669 |
La | Ce | La | La | Ce | La | 1.54 | 1.6403 | 1.4692 |
La | Ce | La | Ce | La | La | 1.1541 | 0.881 | 1.0491 |
La | Ce | Ce | La | La | La | 1.1541 | 0.881 | 1.0491 |
Ce | La | La | La | La | Ce | 1.54 | 1.6403 | 1.4692 |
Ce | La | La | La | Ce | La | 1.559 | 1.6416 | 1.4669 |
Ce | La | La | Ce | La | La | 1.1541 | 0.881 | 1.0491 |
Ce | La | Ce | La | La | La | 1.1541 | 0.881 | 1.0491 |
Ce | Ce | La | La | La | La | 1.8676 | 1.6653 | 1.7879 |
Ce | La | La | La | La | La | 1.5779 | 1.3804 | 1.3728 |
La | Ce | La | La | La | La | 1.5779 | 1.3804 | 1.3728 |
La | La | Ce | La | La | La | 0.8811 | 0.6319 | 0.7995 |
La | La | La | Ce | La | La | 0.8811 | 0.6319 | 0.7995 |
La | La | La | La | Ce | La | 1.1748 | 1.2985 | 1.0975 |
La | La | La | La | La | Ce | 1.1748 | 1.2985 | 1.0975 |
La | La | La | La | La | La | 1.245 | 1.0795 | 1.0531 |
These calculated energies already provide some confirmation of the lanthanum trapping effect. For example, comparing the 2nd and 3rd configurations (which correspond to an oxygen vacancy moving towards a lanthanum cation) with the 6th and 7th configurations (which correspond to an oxygen vacancy moving away from a lanthanum cation) shows that in all three potentials it is easier (lower migration energy) for the oxygen vacancy to move toward a lanthanum cation than it is to move away from a lanthanum cation. These energies confirm the tendency of oxygen vacancies to cluster around the lanthanum ions.
Aaron Oaks 2010-05-10