Breadboard Demo

Description

The Breadboard Demo is an informal but mandatory event. Its purpose is to show your instructor and TA a circuit that you have been working on in the lab for your project. It is expected that the circuit will include the microprocessor you will be using in your project (it can be mounted on a development board) and it will be connected to a project subsystem. The microprocessor should have a program downloaded onto it that allows it to communicate with the subsystem, i.e., control the subsystem or receive data from it. It is expected that the power source for the circuit will be a laboratory power supply. The function of the subsystem should be demonstrated. The commands or data should be displayed on a pc or other display means. You should be able to explain how the circuit is used in the project and be able to justify design choices. A Breadboard Checklist will be provided and filled out.). Use the following format:

    See the Breadboard Demo Rubric for specific details.

Grading

Full Credit (20 points) will be given if the circuit works, is of adequate complexity, and a good explanation of its features is given by the team. Point reductions will be given if the circuit fails to work (-2), lacks complexity (-2), or seems inappropriate for your project (-2). The Breadboard Demo is a team activity and results in a team score.

Master Bus Processor

Clay Kaiser, Philip Macias, Richard Mannion

Master Bus Processor

Featured Project

General Description

We will design a Master Bus Processor (MBP) for music production in home studios. The MBP will use a hybrid analog/digital approach to provide both the desirable non-linearities of analog processing and the flexibility of digital control. Our design will be less costly than other audio bus processors so that it is more accessible to our target market of home studio owners. The MBP will be unique in its low cost as well as in its incorporation of a digital hardware control system. This allows for more flexibility and more intuitive controls when compared to other products on the market.

Design Proposal

Our design would contain a core functionality with scalability in added functionality. It would be designed to fit in a 2U rack mount enclosure with distinct boards for digital and analog circuits to allow for easier unit testings and account for digital/analog interference.

The audio processing signal chain would be composed of analog processing 'blocks’--like steps in the signal chain.

The basic analog blocks we would integrate are:

Compressor/limiter modes

EQ with shelf/bell modes

Saturation with symmetrical/asymmetrical modes

Each block’s multiple modes would be controlled by a digital circuit to allow for intuitive mode selection.

The digital circuit will be responsible for:

Mode selection

Analog block sequence

DSP feedback and monitoring of each analog block (REACH GOAL)

The digital circuit will entail a series of buttons to allow the user to easily select which analog block to control and another button to allow the user to scroll between different modes and presets. Another button will allow the user to control sequence of the analog blocks. An LCD display will be used to give the user feedback of the current state of the system when scrolling and selecting particular modes.

Reach Goals

added DSP functionality such as monitoring of the analog functions

Replace Arduino boards for DSP with custom digital control boards using ATmega328 microcontrollers (same as arduino board)

Rack mounted enclosure/marketable design

System Verification

We will qualify the success of the project by how closely its processing performance matches the design intent. Since audio 'quality’ can be highly subjective, we will rely on objective metrics such as Gain Reduction (GR [dB]), Total Harmonic Distortion (THD [%]), and Noise [V] to qualify the analog processing blocks. The digital controls will be qualified by their ability to actuate the correct analog blocks consistently without causing disruptions to the signal chain or interference. Additionally, the hardware user interface will be qualified by ease of use and intuitiveness.

Project Videos