Order a Pcb

Custom Printed Circuit Boards (PCBs)

In this course, you will be creating and ordering a PCB to use in your project. The primary method for ordering PCBs is to order them through PCBWay. With the help of your TA, you can order a simple, 2-layer, 100mm x 100mm PCB through PCBWay at no cost to you. This PCB will simply be fabricated, as opposed to assembled, so a major portion of this class will be soldering and assembling the PCB you order. This means that you will need to source your components either through the course or other means. See the getting parts page for more details.

Alternatively, you can order a PCB from any outside vendor (including PCBWay) and pay for the cost of the board out of pocket. By paying for a PCB yourself, you are not required to meet the deadlines imposed by the course and can sometimes get your board more quickly.

In rare cases, some teams will be allowed to order PCBs through the Electronics Services Shop in ECEB. If you have need of special board layouts or require a PCB very early in the semester, please discuss this option with your TA as early as possible.

PCBway Orders Through the Course

Orders through PCBway can be submitted and paid for by the ECE department with the help of your TA. Orders will be uploaded to PCBway by your TA and paid for on the dates listed on the course calendar. Please note that the PCBway orders will not be manufactured or shipped until they are paid for so please be aware of the lag time between order submission and payment. In addition, your order must pass PCBway's audit before the payment date for your order to be processed. In order to help students pass audit more quickly, we have provided a DRC file that can be imported in to EagleCAD to verify that your board meets PCBway's capabilities. Passing the DRC does not guarantee that your board will pass audit but it does greatly increase the probability of that event.

Electronic Services Shop

Orders placed through the Electronic Services Shop will require TA approval so please discuss with your TA before contacting the Services Shop. The software most commonly used is EagleCAD. Contact a technician in the Electronic Services Shop with questions.

Please be aware of the PCB deadlines posted on the course calendar. If you are unable to meet these deadlines, you will not be able to order a PCB through the the Electronic Services Shop. You will still be able to order PCBs through third party vendors, just be aware that rushed orders can become expensive.

Commercial quality boards

The most commonly used programs for board layout are Eagle and Orcad Layout. The two software packages below allow a schematic to be drawn and translated into a board layout.

Once the board has been laid out, some companies will manufacture small quantities for a very reasonable price.

Four Point Probe

Simon Danthinne, Ming-Yan Hsiao, Dorian Tricaud

Four Point Probe

Featured Project

# Four Point Probe

Team Members:

Simon Danthinne(simoned2)

Ming-Yan Hsiao(myhsiao2)

Dorian Tricaud (tricaud2)

# Problem:

In the manufacturing process of semiconductor wafers, numerous pieces of test equipment are essential to verify that each manufacturing step has been correctly executed. This requirement significantly raises the cost barrier for entering semiconductor manufacturing, making it challenging for students and hobbyists to gain practical experience. To address this issue, we propose developing an all-in-one four-point probe setup. This device will enable users to measure the surface resistivity of a wafer, a critical parameter that can provide insights into various properties of the wafer, such as its doping level. By offering a more accessible and cost-effective solution, we aim to lower the entry barriers and facilitate hands-on learning and experimentation in semiconductor manufacturing.

# Solution:

Our design will use an off-the-shelf four point probe head for the precision manufacturing tolerances which will be used for contact with the wafer. This wafer contact solution will then be connected to a current source precisely controlled by an IC as well as an ADC to measure the voltage. For user interface, we will have an array of buttons for user input as well as an LCD screen to provide measurement readout and parameter setup regarding wafer information. This will allow us to make better approximations for the wafer based on size and doping type.

# Solution Components:

## Subsystem 1: Measurement system

We will utilize a four-point probe head (HPS2523) with 2mm diameter gold tips to measure the sheet resistance of the silicon wafer. A DC voltage regulator (DIO6905CSH3) will be employed to force current through the two outer tips, while a 24-bit ADC (MCP3561RT-E/ST) will measure the voltage across the two inner tips, with expected measurements in the millivolt range and current operation lasting several milliseconds. Additionally, we plan to use an AC voltage regulator (TPS79633QDCQRQ1) to transiently sweep the outer tips to measure capacitances between them, which will help determine the dopants present. To accurately measure the low voltages, we will amplify the signal using an JFET op-amp (OPA140AIDGKR) to ensure it falls within the ADC’s specifications. Using these measurements, we can apply formulas with corrections for real-world factors to calculate the sheet resistance and other parameters of the wafer.

## Subsystem 2: User Input

To enable users to interact effectively with the measurement system, we will implement an array of buttons that offer various functions such as calibration, measurement setup, and measurement polling. This interface will let users configure the measurement system to ensure that the approximations are suitable for the specific properties of the wafer. The button interface will provide users with the ability to initiate calibration routines to ensure accuracy and reliability, and set up measurements by defining parameters like type, range, and size tailored to the wafer’s characteristics. Additionally, users can poll measurements to start, stop, and monitor ongoing measurements, allowing for real-time adjustments and data collection. The interface also allows users to make approximations regarding other wafer properties so the user can quickly find out more information on their wafer. This comprehensive button interface will make the measurement system user-friendly and adaptable, ensuring precise and efficient measurements tailored to the specific needs of each wafer.

## Subsystem 3: Display

To provide output to users, we will utilize a monochrome 2.4 inch 128x64 OLED LCD display driven over SPI from the MCU. This display will not only present data clearly but also serve as an interface for users to interact with the device. The monochrome LCD will be instrumental in displaying measurement results, system status, and other relevant information in a straightforward and easy-to-read format. Additionally, it will facilitate user interaction by providing visual feedback during calibration, measurement setup, and polling processes. This ensures that users can efficiently navigate and operate the device, making the overall experience intuitive and user-friendly.

# Criterion for Success:

A precise constant current can be run through the wafer for various samples

Measurement system can identify voltage (10mV range minimum) across wafer

Measurement data and calculations can be viewed on LCD

Button inputs allow us to navigate and setup measurement parameters

Total part cost per unit must be less than cheapest readily available four point probes (≤ 650 USD)

Project Videos