Lab

Recommended Tools

In addition to the resources that the course provides, students may find it useful to obtain the tools below:

  • wire cutter
  • wire stripper
  • needle nose pliers
  • screwdrivers
  • hex set (ball ends)
  • electrical tape
  • small scissors
  • a small file

Lab Resources

The Srivastava Senior Design Lab (2070 ECEB) is dedicated to ECE 445 usage. This lab provides you access to a vast array of lab equipment, hardware, and software for your use in developing and implementing your senior design project. In addition, course staff will make themselves available in this lab during their office hours to provide guidance on your project throughout the semester. It is our intention that this laboratory space provides you and your team with all the tools you would need to develop and test your project (within reason!). If there is something that you require in the lab to complete your project that does not exist in the lab, talk to your TA and we will see if we can remedy the situation.

Lab Bench Reservations

If and when the semester gets so busy that finding a lab bench to work at becomes difficult, please make use of the Lab Bench Reservation System in PACE. Reserving a lab bench will guarantee priority access to that bench, even when the lab is busy. To use the tool, after authenticating in PACE, you will see a page with a title "Signup for lab bench" with some text and a large table below that. The table shows the schedule for each bench on a given day (use the orange arrows or "Go To Date" text box to see a different day).  You make your reservation by simply clicking in a grid cell in the table, which will turn the box green. Click on it again to un-reserve the bench (and the box will turn white again).  Benches that are already reserved by another group will be denoted with a yellow box (you can hover your mouse over a yellow box to find out what group has reserved the bench).

A few ground rules:

  1. You may use a lab bench (a) during a time for which you have it reserved or (b) any time during which it is not reserved in the system (on a first-come-first-served basis). However, if you are working at a bench that is unreserved and somebody reserves it using the online system, the group with the reservation gets the lab bench.
  2. There is a limit on the amount of time for which you can reserve benches in 2070 ECEB.  The limit is currently a total of 4 hours of total bench time in the lab per group per day (e.g., 2 hours at Bench A and 2 hours at Bench B would max out your team's reservations for the day).  While this may seem restrictive, keep in mind that the course serves more than 60 groups in a typical semester and the lab has only 16 benches.  Also keep in mind that you can work at a bench if it is unreserved.
  3. Some lab benches have specialized equipment at them, such as digital logic analyzers.  Try to reserve the lab bench that has the equipment that you need.
  4. Cancel reservations that you will not need as soon as possible to give other groups a chance to reserve the lab bench.  You can cancel a reservation up to 1 hour before time and not have it count against your daily allotment.
  5. Conflicts and/or reports of people not following these rules should be sent to your TA with the course faculty in copy.
  6. Above all, be courteous.  Especially near the end of the semester, the lab will be full most of the time and stress will abound.  Clean up the lab bench when you are done with it.  Start and end your sessions on time.  Be patient and friendly to your peers and try to resolve conflicts professionally.  If we notice empty lab benches that have been reserved, we will cancel your reservations and limit your ability to reserve lab benches in the future. Similarly, do not reserve more time than you will need.  If we notice that you are frequently canceling reservations, we will limit your ability to reserve lab benches in the future. Finally, do not try to “game” the system and reserve a bench for 30 minutes every hour for eight hours. We will notice this and revoke your ability to reserve a bench.

Lab Rules

There are two overriding rules of working in the Srivastava Senior Design Lab. First, be safe. Second, be courteous. Lab access will be revoked if you fail to complete the required laboratory safety training by the deadline or if you break any of the lab rules. Specific points and examples of what we expect:

Breaking the rules or exhibiting bad laboratory etiquette will lead to a loss of points and/or revocation of laboratory access.

Lab Equipment Rules

Do not remove any equipment from the lab. Students may not change the connections on equipment without TA approval. Any approved changes that are made should be undone before leaving the lab. If a bench instrument is malfunctioning, a red repair tag should be placed on it and you should notify your TA. This alerts the staff to the problem, and allows the Electronics Services Shop to fix the problem.

When using a piece of laboratory equipment for the first time, please ask a TA for help. If you are inexperienced with a piece of hardware, do not assume that it is broken just because you cannot figure out how to use it. Similarly, if you use a piece of equipment to test your project and the equipment does not perform the way you think it should, do not assume the fault is with the equipment, and do not try again with equipment on another bench. Rather, stop and make absolutely sure the problem is not with your connections or project.

If you break any laboratory equipment, you must tell your TA within 1 business day. Any attempts to conceal breakage will result in an F in the course.

Room Access

The lab room (2070 ECEB) is on the electronic key-card system. The Department automatically adds room access to the building and the lab for all students on the roster. You will need a “prox enanabled” I-Card to swipe into the room. If the door does not open after several attempts, you may need to get a replacement card. Room access is automatically restricted to faculty and TAs during official breaks (i.e., Thanksgiving, Christmas, and Spring Break).

Computer Access

The lab computers are EWS computers and are setup like other Windows-based EWS systems you are familiar with. Standard EWS rules apply to these machines. In particular, please store any/all files you generate on a network drive or in the cloud. The C: drive should not be used for any personal material, since it is unprotected and is available only on the particular machine where it was originally stored. A particular computer may be cleared and reconfigured at any time for maintenance reasons.

In addition to the desktop computers, EWS maintains the printer in the lab. You are free to use it to print documents related to your project, but be aware that this printing counts against your standard print quota.

Decentralized Systems for Ground & Arial Vehicles (DSGAV)

Mingda Ma, Alvin Sun, Jialiang Zhang

Featured Project

# Team Members

* Yixiao Sun (yixiaos3)

* Mingda Ma (mingdam2)

* Jialiang Zhang (jz23)

# Problem Statement

Autonomous delivery over drone networks has become one of the new trends which can save a tremendous amount of labor. However, it is very difficult to scale things up due to the inefficiency of multi-rotors collaboration especially when they are carrying payload. In order to actually have it deployed in big cities, we could take advantage of the large ground vehicle network which already exists with rideshare companies like Uber and Lyft. The roof of an automobile has plenty of spaces to hold regular size packages with magnets, and the drone network can then optimize for flight time and efficiency while factoring in ground vehicle plans. While dramatically increasing delivery coverage and efficiency, such strategy raises a challenging problem of drone docking onto moving ground vehicles.

# Solution

We aim at tackling a particular component of this project given the scope and time limitation. We will implement a decentralized multi-agent control system that involves synchronizing a ground vehicle and a drone when in close proximity. Assumptions such as knowledge of vehicle states will be made, as this project is aiming towards a proof of concepts of a core challenge to this project. However, as we progress, we aim at lifting as many of those assumptions as possible. The infrastructure of the lab, drone and ground vehicle will be provided by our kind sponsor Professor Naira Hovakimyan. When the drone approaches the target and starts to have visuals on the ground vehicle, it will automatically send a docking request through an RF module. The RF receiver on the vehicle will then automatically turn on its assistant devices such as specific LED light patterns which aids motion synchronization between ground and areo vehicles. The ground vehicle will also periodically send out locally planned paths to the drone for it to predict the ground vehicle’s trajectory a couple of seconds into the future. This prediction can help the drone to stay within close proximity to the ground vehicle by optimizing with a reference trajectory.

### The hardware components include:

Provided by Research Platforms

* A drone

* A ground vehicle

* A camera

Developed by our team

* An LED based docking indicator

* RF communication modules (xbee)

* Onboard compute and communication microprocessor (STM32F4)

* Standalone power source for RF module and processor

# Required Circuit Design

We will integrate the power source, RF communication module and the LED tracking assistant together with our microcontroller within our PCB. The circuit will also automatically trigger the tracking assistant to facilitate its further operations. This special circuit is designed particularly to demonstrate the ability for the drone to precisely track and dock onto the ground vehicle.

# Criterion for Success -- Stages

1. When the ground vehicle is moving slowly in a straight line, the drone can autonomously take off from an arbitrary location and end up following it within close proximity.

2. Drones remains in close proximity when the ground vehicle is slowly turning (or navigating arbitrarily in slow speed)

3. Drone can dock autonomously onto the ground vehicle that is moving slowly in straight line

4. Drone can dock autonomously onto the ground vehicle that is slowly turning

5. Increase the speed of the ground vehicle and successfully perform tracking and / or docking

6. Drone can pick up packages while flying synchronously to the ground vehicle

We consider project completion on stage 3. The stages after that are considered advanced features depending on actual progress.

Project Videos