Entrepreneurial Resources

Ingenuity Article on ECE

"If you have a dream, it's better to try and start a company and fail than to not try at all," said Whoola's founder Iyer, who is currently working with venture capitalists to hire a seasoned management team to help oversee his company's growth. Iyer appreciates the university's efforts to incubate start-up companies. "Some of the greatest companies got started in a garage," Iyer said. "This university is providing a five-star garage," he added, referring to the TCL, "so anybody who does not think the U of I is doing enough should maybe not be an entrepreneur."

MRM's Peck believes the timing is right for more entrepreneurs to enter the arena. "Students interested in pursuing this kind of a route are going to see tremendous resources begin to come into place over the next few years both on and off campus," predicted Peck.

Design Competitions

Available Grants

1) Leung Fund

Eligibility: ECE Students, individually or in teams of up to 4 students, at least one being in ECE, may apply for funds up to a maximum of $2,000 for use in accomplishing projects beyond normal classroom activities. These projects may be done as part of a normal class, but should in some way be extraordinary for that class. Projects may also be part of an individual study supervised by a faculty member or may be done within the context of a student organization.

Use of funds: Funds may be used for material costs, services (e.g. machine shop time), and, in special circumstances, travel.

Application materials: Students should submit: 

1. An abstract describing the project in 200-400 words.

2. An itemized budget and accompanying budget justification.

3. A list of deliverables. A final report should always be included in this list.

4. A timeline.

5. An outlook for plans beyond the project and long term impact.

Application process: Materials should be emailed to leungfund@illinois.edu with the subject line "Leung Student Venture Fund." Applications should be received by the end of the fourth week of the semester for full consideration, but will be reviewed on an ad hoc basis after that and funded contingent on remaining budget.

Dispersal of funds: Students should obtain supplies through the ECE Store whenever possible. Otherwise, reimbursements will be handled in the ECE Business Office. Orders and receipts should be consistent with the approved budget and will be reviewed. Major changes in budget should be approved by the review committee. Small adjustments in price or specific component choice do not require additional approval.

 

2) NCIIA

Advanced E-Team Grants
Grants range from $1,000 to $20,000 and may be used for further development and plans for commercialization of their ideas. Funding can be used for project expenses, legal fees, or student internships. These grants will be renewable for up to three years in declining amounts.

3) OSBI

As the consulting arm of the Illinois MBA program, OSBI finds solutions for companies as big Procter & Gamble or as small as technology startups here at the University of Illinois. OSBI conducts 30-40 projects at one time. Clients include General Electric, Dow AgroSciences, Lucent Technologies, Mayo Medical Ventures, and many technology start-ups and commercialization efforts.

If you have an interest in developing your projects further, please use their Contact page to request further information.

Intellectual Property

In the Intellectual Property world, there are four distinct types of safeguards for your ideas: Patents, Copyrights, Trade Secrets, and Trademarks.

  1. PATENTS: A patent is a license by the government that permits its owner to exclude members of the public from making, using, or selling the claimed invention.

    Important things to remember about patents:
    • To receive a patent, the invention must be useful, novel, and unobvious.
    • Disclosure: When an invention is publicly disclosed, inventors have one year to file a patent. Public disclosure means that the invention was seen in a public setting or similarly accessible to the public.
    • Cost: A patent application process will cost anywhere from $2000 - $10,000, and protection lasts from 14 to 20 years.
    • Laboratory notebooks are VERY important.
    • A provisional patent application (PPA) is a low-cost way of delaying the filing of a full patent application for one year. The filing fee is $75 - $150.
    • Priority goes to the first to invent, not the first to file.
    A presentation by Joe Barich on Patent Engineering and intellectual property is available for your perusal.
    Disclaimer: This presentation does not constitute legal advice. This presentation does not create an attorney-client relationship. This presentation was accurate as of the date it was originally given, but may become inaccurate due to changes in the underlying legal framework.
     
  2. COPYRIGHTS: A copyright covers only the expression of a work and does not do anything to stop people from approaching clever ideas that happened to be embodied in that work. A Copyright extends to software, meaning no one can copy it. No registration is mandatory, though registration could make for stronger claims later in case of infringement. Competitors could still look at software and come close to it without actually copying it. However, with a patent on the full invention, including the software, competitors are forbidden to design something like it.
     
  3. TRADE SECRETS: A trade secret is a duty to keep an invention secret, thus protecting it until a patent is issued or an invention is publicly disclosed. It is possible that this protection can be lost if secrets are not protected.
     
  4. TRADEMARKS: A trademark is either a word, phrase, symbol, or design that identifies and distinguishes the source of the goods or services of one party from those of others.

Here is the official Illinois Policy Concerning Ownership of Intellectual Property Created by Students as Class Work.

Here is a list of Web Resources maintained by the OTM for the University's Patent Office. For more specific instructions, see the following section.

Invention or Software Copyright Disclosures

Here are instructions for dealing with invention disclosures or software copyright disclosures, should the need arise:

  1. Go to the OTM (Office of Technology Management) Web site: http://www.otm.illinois.edu/
     
  2. Under the "For Campus" tab, there is the (1) Invention Disclosure Form, (2) Software Disclosure Form, and (3) Mobile App Disclosure Form. Complete and submit -- through the ECE Department -- the applicable Disclosure Form.
     
  3. The Invention Disclosure Form, under Section 14, contains the following statement:

    I (We) hereby agree to assign all right, title and interest to this invention to the UI and agree to execute all documents as requested, assigning to UI our rights in any patent application filed on this invention and to cooperate with the RTMO in the protection of this invention. UI will share any royalty income derived from the invention with the inventor(s) according to the General Rules, Article III, Section 8.

    Cross out/strike that paragraph -- and write in something like SEE ATTACHED LETTER -- and then add a letter that explains what you want from the University and why, giving as much detail as necessary for the OTM to check out the situation fully (i.e., that is not already covered by answering the questions in the Disclosure Form).
     
  4. After completing the Form, send it to the ECE Assistant to the Department Head in the Business Office (2120 ECEB). The form will be forwarded to OTM with a cover letter. OTM will then assign the Disclosure to a Tech Manager who will follow up as needed and coordinate a response to the students involved.

Transferring Intellectual Property Rights

Some projects proposed by mentors external or internal to the University, may require that you transfer the rights to intellectual property developed as part of the project they propose. Whether you agree to transfer the rights or decide to undertake a different project is completely up to you, the student.

If you do decide to undertake the proposed project, you will need to sign over your rights using this pre-approved form.

Mushroom Growing Tent

Elizabeth Boyer, Cameron Fuller, Dylan Greenhagen

Mushroom Growing Tent

Featured Project

# Mushroom Growing Tent Project

Team Members:

- Elizabeth Boyer (eboyer2)

- Cameron Fuller (chf5)

- Dylan Greenhagen (dylancg2)

# Problem

Many people want to grow mushrooms in their own homes to experiment with safe cooking recipes, rather than relying on risky seasonal foraging, expensive trips to the store, or time and labor-intensive DIY growing methods. However, living in remote areas, specific environments, or not having the experience makes growing your own mushrooms difficult, as well as dangerous. Without proper conditions and set-up, there are fire, electrical, and health risks.

# Solution

We would like to build a mushroom tent with humidity and temperature sensors that could monitor the internal temperature and humidity, and heating, and humidity systems to match user settings continuously. There would be a visual interface to display the current temperature and humidity within the environment. It would be medium-sized (around 6 sq ft) and able to grow several batches at a time, with more success and less risk than relying on a DIY mushroom tent.

Some solutions to home-grown mushroom automation already exist. However, there is not yet a solution that encompasses all problems we have outlined. Some solutions are too small of a scale, so they don’t have the heating/cooling power for a larger scale solution. Therefore, it’s not enough to yield consistent batches. Additionally, there are solutions that give you a heater, a light set, and a humidifier, but it’s up to the user to juggle all of these modules. These can be difficult to balance and keep an eye on, but also dangerous if the user does not have experience. Spores can get released, heaters can overheat, and bacteria and mold can grow. Our solution offers an all-in-one, simple, user-friendly environment to bulk growing.

# Solution Components

## Control Unit and User Interface

The control unit and user interface are grouped together because the microcontroller is central to the design of both, and they are closely linked in function.

The user interface will involve a display that shows measured or set values for different conditions (temperature, humidity, etc) on a display, such as an LCD display, and the user will have buttons and/or knobs that allow the user to change values.

The control unit will be centered around a microcontroller on our PCB with circuitry to connect to the other subsystems.

Parts List:

1x Microcontroller

1x PCB, including small buttons and/or knobs, power circuitry

1x Display module

1x Power supply

## Temperature Sensing and Control

The temperature sensing and control components will ensure that the grow box stays at the desired temperature that promotes optimal growth. The system will include one temperature sensor that will record the current temperature of the box and feed a data output back into our PCB. From here, the microcontroller in our control unit will read the data received and send the necessary adjustments to a Peltier module. The Peltier module will be able to increase the temperature of the box according to the current temperature of the box and set temperature. Cooling will not be required, as maintaining a minimum temperature is more important than a maximum temperature for growth.

Parts List:

1x Temperature Sensor

1x Peltier module

## Humidity Sensing and Control

The humidity sensing and control system will work in a similar way to the temperature system, only with different ways to adjust the value. We will have one humidity sensor that will be continually sending data to our PCB. From here, the PCB will determine whether the current value is where it should be, or whether adjustments need to be made. If an increase in humidity is needed, the PCB will send a signal to our misting system which will activate. If a decrease is needed, a signal will be sent to our air cycling system to increase the rate of cycling, thereby decreasing the humidity within the box.

Parts List:

1x Humidity Sensor

4x Misting heads

Water tubing as needed

## Air Quality Control

The air filtration system is run constantly, as healthy mushroom growth (free of bacteria) needs clean, fresh air, and mycelium requires and uses up oxygen as it grows. Additionally, this unit is connected to the hydration sensing unit- external humidity is in most cases going to be lower than internal humidity, and cycling in new air can be used to decrease humidity. When high humidity is detected, the air filtration system will decrease the internal humidity by cycling in less humid air.

Parts List:

Flexible Air duct length as needed

1x Fan for promoting air cycling

# Criteria For Success

Our demo will show that each of our subsystems functions as expected and described below:

For the control unit and user interface, we will demonstrate that the user can change the set temperature and humidity values through buttons or knobs.

The humidity sensing and control system’s functionality will demonstrate that introducing dry air into the device activates the misting system, which requires functional sensors and a water pump.

The temperature sensing and control system demo will involve showing that the heater turns on when the measured temperature is below the set temperature.

The air quality control system’s success will be demonstrated as air movement coming from the fan enters the tent.

Project Videos