Special Circuit :: ECE 445 - Senior Design Laboratory

Special Circuit

A student whose Senior Thesis Project (ECE 499) does not involve the design and construction or testing of electronic devices or hardware is required to complete a Special Circuit Project in the ECE 445 lab during the semester they take ECE 499. In addition, students enrolled in ECE 445 who are not undertaking a hardware dominant project are required to complete the special circuit (although this is strongly discouraged and the course staff will work with your team to make sure you have enough hardware in your project to avoid having to complete the special circuit.)

The special circuit is typically posted in the middle of the semester. Once you sign up for the special circuit (see below), you will be assigned a TA, a locker, and a special circuit which generally takes about 12-15 hours to complete. When you have it designed and built, you will give a functional demonstration to your TA, who will then inform the professor who will inform undergraduate advising that your task is complete. You are NOT required to attend any of the classes, reviews, demos, or presentations associate with the ECE 445 class.

Sign up for Spring 2020 is now open

Sign up for the Special Circuit assignment on the Lab Access page. Instructions for completing the special circuit will then be provided in the near future. Please check this page for updates.

Link to all Special Circuit design problems. 

Digitizing the Restaurant with Network-Enabled Smart Tables

Andrew Chen, Eric Ong, Can Zhou

Featured Project

# Students

Andrew Chen - andrew6

Eric Ong - eong3

Can Zhou - czhou34

# Problem:

The restaurant industry relies on relatively archaic methods of management and customer service. Internal restaurant computer systems are limited and rely on staff members to monitor customer status. Restaurants lack contact-free transactions for clientele.

# Solution Overview:

Our solution to this problem is to develop a standalone LAN restaurant network system to manage customer status and occupancy for restaurants without the need for personnel to monitor it manually. Along with this, to accommodate for contact-free interactions, we propose a system for payment methods. To address customer preferences, we will provide height accommodation built into the table for different types of people.

# Solution Components:

[Self-adjusting Customer Height Accommodation] - The table will be held up with a linear actuator, thus allowing for the overall height to be adjustable. The table will adjust its height accordingly to the customers’ heights once they sit down. We plan to make the table adjust the table’s height by measuring the distance between the bottom of the table with the customer’s knees when they are sitting down using ultrasonic sensors.

[NFC Payment and Card Reader Payment] - The table will have NFC reader and magstripe reader for contactless delivery. The payment data will be sent to the centralized hub for processing and confirmation.

[Table Pressure Sensor] - The status of a table will be gauged based on the amount of weight on the physical table itself. An occupied (or even just an unoccupied and dirty table) will be marked as such since the weight of excess food, water, plates, and whatever else the customer may bring will be measured by this pressure sensor.

[Computer Mesh Network] - We plan to create a mesh network of raspberry pi’s to track the status of tables in a restaurant. This network will communicate via some form of wireless communication (Wi-FI, bluetooth, or Zigbee).

# Criterion for Success:

This project seeks to create a solution in which restaurants can minimize customer interaction with features that accommodate individual needs, such as the height of the table and payment methods. This project will be considered successful with a working prototype that includes features that may be included in an actual restaurant setting.

Project Videos