Sponsors

Cypress Semiconductor Corporation

Sponsored Projects

  • Automatic Toothpaste Dispenser (Spring 2019)
  • Automatic Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)

Illinois Robotics in Space

Illinois Robotics in Space (IRIS) is an RSO at the University of Illinois at Urbana-Champaign. Every year IRIS competes in the NASA Robotic Mining Competition at Kennedy Space Center, works on smaller robotics-related projects and teaches younger students at local schools about what IRIS does.

Sponsored Projects

  • IRIS Localization System (Spring 2015)
  • IRIS Localization System (Spring 2015)

Illinois Tool Works Inc.

Sponsored Projects

  • Weld Gun Spatial Tracking System (Spring 2019)
  • Weld Gun Spatial Tracking System (Spring 2019)

Micron

Sponsored Projects

  • Soccer Team Gameplay Metrics (Spring 2019)
  • Soccer Team Gameplay Metrics (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)

PowerBox Technology

Sponsored Projects

  • PowerBox Technology Power Meter (Fall 2024)

Siebel Center for Design

Sponsored Projects

  • Reconnaissance robot (SCD pitch) (Spring 2019)
  • Reconnaissance robot (SCD pitch) (Spring 2019)

Illini Solar Car

Sponsor

While Illini Solar Car started as a handful of engineering students in 2014, it takes more than that to create a solar car. Today we have grown into a much larger operation harnessing the skills of students from four colleges at Illinois to create one beautiful product.

Sponsored Projects

  • CUSTOM MPPTS FOR ILLINI SOLAR CAR (Spring 2024)
  • Active Cell Balancing for Solar Vehicle Battery Pack (Spring 2021)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Integrated Li-ion Battery Sensors (Fall 2018)
  • Integrated Li-ion Battery Sensors (Fall 2018)

LASSI

Sponsor

Laboratory for Advanced Space Systems at Illinois

Sponsored Projects

  • Power Board for Illini-Sat3 (Spring 2019)
  • Power Board for Illini-Sat3 (Spring 2019)

Lextech

Sponsor

Northrop Grumman Corporation

Sponsor

Northrop Grumman Corporation has provided funding for laboratory equipment and supplies in the area of applied electromagnetics, as well as support for the following groups.

Sponsored Projects

  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Radio Jammer (Fall 2005)
  • Radio Jammer (Fall 2005)

Advance Devices

Supporter

ARM

Supporter

Boeing

Supporter

Intel

Supporter

Raytheon

Supporter

Rockwell Collins

Supporter

Rockwell Collins has provided funding for laboratory equipment and supplies in the area of applied electromagnetics. A number of RF student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Continuous-frequency Synthesizer (Spring 2005)
  • Continuous-frequency Synthesizer (Spring 2005)
  • football position tracker (Spring 2005)
  • football position tracker (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Car rooftop antenna (Fall 2004)
  • Car rooftop antenna (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)

Skot Wiedmann

Supporter

Sponsored Projects

  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Modular Analog Synthesizer (Fall 2017)
  • Modular Analog Synthesizer (Fall 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)

TAKE Solutions

Supporter

Funded Project 39 (smart door) Spring 2015

Texas Instruments

Supporter

Texas Instruments has donated laboratory equipment for DSP and RFID based projects. A number of student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Miner Tracking Devices (Spring 2006)
  • Miner Tracking Devices (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)

Xilinx

Supporter

Antweight Battlebot Project

Jeevan Navudu, Keegan Teal, Avik Vaish

Antweight Battlebot Project

Featured Project

# Antweight Battlebot

Team Members:

- Keegan Teal (kteal2)

- Avik Vaish (avikv2)

- Jeevan Navudu (jnavudu2)

# Problem

In order to compete in Professor Gruev’s robot competition, there are many constraints that need to be met, including:

- Maximum weight (2lbs)

- Allowed materials (3D-printed thermoplastics)

- Locomotion system and fighting tool

- Wireless control via Bluetooth or Wifi

The main goal of this competition is to design a Battlebot that is capable of disrupting the functionality of the other Battlebots with our fighting tool while maintaining our own functionality.

# Solution

For the project, we plan to build a battlebot with a custom electronic speed controller (ESC) that can independently control three brushless motors: two for the drive system, and one for the fighting tool. This ESC will be controlled by an STM32 microcontroller, to which we will add a Bluetooth module to connect to it and specify how much power we want to send to each motor. To communicate with our robot, we will use a laptop that can connect to Bluetooth.

# Solution Components

## Vehicle Controller

The main subsystem of the robot will be a combined vehicle control board and ESC. This subsystem will contain an STM32 Microcontroller that will serve as the brain for the whole robot. With this MCU, we’ll be able to flash our whole software package that will be able to control the speed and direction of the robot, the robot’s weapon, and the Bluetooth communication.

## Power Module

This subsystem includes the battery, the voltage regulators/converters needed to power the electronics, and the necessary battery monitoring circuitry. Specifically, for the battery, we will use a 14.8V 4S2P LiPo pack to power all the components. There will also be a voltage short detection circuit for the battery that will shut down the robot in case of a short to ensure safe practices. This subsystem also contains a 5V linear regulator and 3.3V linear regulator to power the low voltage electronics.

## Drivetrain/Powertrain

This subsystem includes the motors and H-bridges needed to control both the wheels and weapon of the robot. The H-bridges will be made with regular N-MOSs that will be controlled by a PWM signal sent from the STM32 MCU. This H-bridge setup will be able to control the voltage and polarity sent to the motors, which will be able to control the speed of the wheels or weapon. This subsystem will also include the mechanical wheels of the robot and actual hardware of the weapon, which will be a spinning object. Since all the wheels and the weapon have the same mechanical motion, they can all use the same hardware and software electronically, with minor adjustments in motor selection and the actual mechanical hardware/peripheral.

## Bluetooth Module

One big requirement for this project is the ability for the robot to be controlled wirelessly via laptop. The STM32 MCU has bluetooth capabilities, and with additional peripheral hardware, the robot will be able to communicate over bluetooth with a laptop. The goal for the laptop is to be able to control the speed, direction, and weapon of the robot wirelessly and also have a display for live telemetry.

## Mechanical Design

The last part of our project would be the mechanical design of the robot chassis and weapon. For the chassis and weapon material, we decided to go with PLA+ as it offers a blend of being strong and robust but not being too brittle. The drive system will be a 2-wheeled tank style drive with one motor controlling each side of the robot. For the weapon, we are looking to utilize a fully 3D-printed drum that will have a 100% infill to maximize the rotational inertia which can lead to bigger impacts.

## Criterion for Success

We would consider our project a success if we are able to communicate with the robot from our computer as in sending throttle and steering commands to the robot, if those commands are then processed on the robots microprocessors and the motors are sent the according power needed to move and behave in the way that we want during a match.

## Alternatives

The most commonly used electronics in current antweight battlebots consist mostly of RC drone parts. We plan to create a very similar ESC to those on the market but it will have an integrated Bluetooth wireless capability as well as telemetry monitoring. We also want to focus on minimizing packaging size to lower weight and increase flexibility as much as possible.

Project Videos