Sponsors

Cypress Semiconductor Corporation

Sponsored Projects

  • Automatic Toothpaste Dispenser (Spring 2019)
  • Automatic Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)
  • Smart Electric Toothpaste Dispenser (Spring 2019)

Illinois Robotics in Space

Illinois Robotics in Space (IRIS) is an RSO at the University of Illinois at Urbana-Champaign. Every year IRIS competes in the NASA Robotic Mining Competition at Kennedy Space Center, works on smaller robotics-related projects and teaches younger students at local schools about what IRIS does.

Sponsored Projects

  • IRIS Localization System (Spring 2015)
  • IRIS Localization System (Spring 2015)

Illinois Tool Works Inc.

Sponsored Projects

  • Weld Gun Spatial Tracking System (Spring 2019)
  • Weld Gun Spatial Tracking System (Spring 2019)

Micron

Sponsored Projects

  • Soccer Team Gameplay Metrics (Spring 2019)
  • Soccer Team Gameplay Metrics (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)
  • Traffic Sensing Bicycle Light (Spring 2019)

PowerBox Technology

Sponsored Projects

  • PowerBox Technology Power Meter (Fall 2024)

Siebel Center for Design

Sponsored Projects

  • Reconnaissance robot (SCD pitch) (Spring 2019)
  • Reconnaissance robot (SCD pitch) (Spring 2019)

Illini Solar Car

Sponsor

While Illini Solar Car started as a handful of engineering students in 2014, it takes more than that to create a solar car. Today we have grown into a much larger operation harnessing the skills of students from four colleges at Illinois to create one beautiful product.

Sponsored Projects

  • CUSTOM MPPTS FOR ILLINI SOLAR CAR (Spring 2024)
  • Active Cell Balancing for Solar Vehicle Battery Pack (Spring 2021)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Modules for Safe Power Distribution in an Electric Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Standalone Steering Wheel for Solar Racing Vehicle (Spring 2019)
  • Integrated Li-ion Battery Sensors (Fall 2018)
  • Integrated Li-ion Battery Sensors (Fall 2018)

LASSI

Sponsor

Laboratory for Advanced Space Systems at Illinois

Sponsored Projects

  • Power Board for Illini-Sat3 (Spring 2019)
  • Power Board for Illini-Sat3 (Spring 2019)

Lextech

Sponsor

Northrop Grumman Corporation

Sponsor

Northrop Grumman Corporation has provided funding for laboratory equipment and supplies in the area of applied electromagnetics, as well as support for the following groups.

Sponsored Projects

  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Filtered Back – Projection Optical Demonstration (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Wearable UV Radiation Sensing Device (Fall 2014)
  • Radio Jammer (Fall 2005)
  • Radio Jammer (Fall 2005)

Advance Devices

Supporter

ARM

Supporter

Boeing

Supporter

Intel

Supporter

Raytheon

Supporter

Rockwell Collins

Supporter

Rockwell Collins has provided funding for laboratory equipment and supplies in the area of applied electromagnetics. A number of RF student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Quadcopter - Sense and Avoid - Revised RFA (Fall 2014)
  • Continuous-frequency Synthesizer (Spring 2005)
  • Continuous-frequency Synthesizer (Spring 2005)
  • football position tracker (Spring 2005)
  • football position tracker (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • Point-to-Point RF Communication for Wildlife Project (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • RFID-based parking meter system (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Smart Inventory Management System (SIMS) Using RFID (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Wireless Laptop Alarm (Spring 2005)
  • Car rooftop antenna (Fall 2004)
  • Car rooftop antenna (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Portable Wireless Locator System (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Transmission line modeling in SPICE (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless Heart Attack Detector with GPS (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)
  • Wireless switch of household appliances for handicapped (Fall 2004)

Skot Wiedmann

Supporter

Sponsored Projects

  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Interactive Proximity Donor Wall Illumination (Fall 2018)
  • Modular Analog Synthesizer (Fall 2017)
  • Modular Analog Synthesizer (Fall 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)
  • AUDIO - ANALOG/DIGITAL SYNTHESIZER - ANALOG VOLTAGE CONTROLLED OSCILLATOR TO DIGITALLY CONTROLLED STEP-SEQUENCER (Spring 2017)

TAKE Solutions

Supporter

Funded Project 39 (smart door) Spring 2015

Texas Instruments

Supporter

Texas Instruments has donated laboratory equipment for DSP and RFID based projects. A number of student projects have directly benefited from these improvements to the laboratory.

Sponsored Projects

  • Miner Tracking Devices (Spring 2006)
  • Miner Tracking Devices (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)
  • Quantum Cryptography Project 1 (Spring 2006)

Xilinx

Supporter

Oxygen Delivery Robot

Aidan Dunican, Nazar Kalyniouk, Rutvik Sayankar

Oxygen Delivery Robot

Featured Project

# Oxygen Delivery Robot

Team Members:

- Rutvik Sayankar (rutviks2)

- Aidan Dunican (dunican2)

- Nazar Kalyniouk (nazark2)

# Problem

Children's interstitial and diffuse lung disease (ChILD) is a collection of diseases or disorders. These diseases cause a thickening of the interstitium (the tissue that extends throughout the lungs) due to scarring, inflammation, or fluid buildup. This eventually affects a patient’s ability to breathe and distribute enough oxygen to the blood.

Numerous children experience the impact of this situation, requiring supplemental oxygen for their daily activities. It hampers the mobility and freedom of young infants, diminishing their growth and confidence. Moreover, parents face an increased burden, not only caring for their child but also having to be directly involved in managing the oxygen tank as their child moves around.

# Solution

Given the absence of relevant solutions in the current market, our project aims to ease the challenges faced by parents and provide the freedom for young children to explore their surroundings. As a proof of concept for an affordable solution, we propose a three-wheeled omnidirectional mobile robot capable of supporting filled oxygen tanks in the size range of M-2 to M-9, weighing 1 - 6kg (2.2 - 13.2 lbs) respectively (when full). Due to time constraints in the class and the objective to demonstrate the feasibility of a low-cost device, we plan to construct a robot at a ~50% scale of the proposed solution. Consequently, our robot will handle simulated weights/tanks with weights ranging from 0.5 - 3 kg (1.1 - 6.6 lbs).

The robot will have a three-wheeled omni-wheel drive train, incorporating two localization subsystems to ensure redundancy and enhance child safety. The first subsystem focuses on the drivetrain and chassis of the robot, while the second subsystem utilizes ultra-wideband (UWB) transceivers for triangulating the child's location relative to the robot in indoor environments. As for the final subsystem, we intend to use a camera connected to a Raspberry Pi and leverage OpenCV to improve directional accuracy in tracking the child.

As part of the design, we intend to create a PCB in the form of a Raspberry Pi hat, facilitating convenient access to information generated by our computer vision system. The PCB will incorporate essential components for motor control, with an STM microcontroller serving as the project's central processing unit. This microcontroller will manage the drivetrain, analyze UWB localization data, and execute corresponding actions based on the information obtained.

# Solution Components

## Subsystem 1: Drivetrain and Chassis

This subsystem encompasses the drive train for the 3 omni-wheel robot, featuring the use of 3 H-Bridges (L298N - each IC has two H-bridges therefore we plan to incorporate all the hardware such that we may switch to a 4 omni-wheel based drive train if need be) and 3 AndyMark 245 RPM 12V Gearmotors equipped with 2 Channel Encoders. The microcontroller will control the H-bridges. The 3 omni-wheel drive system facilitates zero-degree turning, simplifying the robot's design and reducing costs by minimizing the number of wheels. An omni-wheel is characterized by outer rollers that spin freely about axes in the plane of the wheel, enabling sideways sliding while the wheel propels forward or backward without slip. Alongside the drivetrain, the chassis will incorporate 3 HC-SR04 Ultrasonic sensors (or three bumper-style limit switches - like a Roomba), providing a redundant system to detect potential obstacles in the robot's path.

## Subsystem 2: UWB Localization

This subsystem suggests implementing a module based on the DW1000 Ultra-Wideband (UWB) transceiver IC, similar to the technology found in Apple AirTags. We opt for UWB over Bluetooth due to its significantly superior accuracy, attributed to UWB's precise distance-based approach using time-of-flight (ToF) rather than meer signal strength as in Bluetooth.

This project will require three transceiver ICs, with two acting as "anchors" fixed on the robot. The distance to the third transceiver (referred to as the "tag") will always be calculated relative to the anchors. With the transceivers we are currently considering, at full transmit power, they have to be at least 18" apart to report the range. At minimum power, they work when they are at least 10 inches. For the "tag," we plan to create a compact PCB containing the transceiver, a small coin battery, and other essential components to ensure proper transceiver operation. This device can be attached to a child's shirt using Velcro.

## Subsystem 3: Computer Vision

This subsystem involves using the OpenCV library on a Raspberry Pi equipped with a camera. By employing pre-trained models, we aim to enhance the reliability and directional accuracy of tracking a young child. The plan is to perform all camera-related processing on the Raspberry Pi and subsequently translate the information into a directional command for the robot if necessary. Given that most common STM chips feature I2C buses, we plan to communicate between the Raspberry Pi and our microcontroller through this bus.

## Division of Work:

Given that we already have a 3 omni wheel robot, it is a little bit smaller than our 50% scale but it allows us to immediately begin work on UWB localization and computer vision until a new iteration can be made. Simultaneously, we'll reconfigure the drive train to ensure compatibility with the additional systems we plan to implement, and the ability to move the desired weight. To streamline the process, we'll allocate specific tasks to individual group members – one focusing on UWB, another on Computer Vision, and the third on the drivetrain. This division of work will allow parallel progress on the different aspects of the project.

# Criterion For Success

Omni-wheel drivetrain that can drive in a specified direction.

Close-range object detection system working (can detect objects inside the path of travel).

UWB Localization down to an accuracy of < 1m.

## Current considerations

We are currently in discussion with Greg at the machine shop about switching to a four-wheeled omni-wheel drivetrain due to the increased weight capacity and integrity of the chassis. To address the safety concerns of this particular project, we are planning to implement the following safety measures:

- Limit robot max speed to <5 MPH

- Using Empty Tanks/ simulated weights. At NO point ever will we be working with compressed oxygen. Our goal is just to prove that we can build a robot that can follow a small human.

- We are planning to work extensively to design the base of the robot to be bottom-heavy & wide to prevent the tipping hazard.