Continuing your Project

Description

Groups that wish to continue their projects are encouraged to sign up for Undergraduate Independent Study: ECE 396, ECE 397, ECE 497, or ECE 499.

Funds of up to $500 are available in order to defray project expenses. These funds have been generously provided by the ECE Alumni Fund and may be used for materials and supplies, equipment, computer software, etc. Funds may not be used for salaries or wages. Purchases may be made through the ECE Business Office, ECE Stores or reimbursement of personal funds with proper documentation. More information will be provided upon approval.

Please see the Undergraduate Independent Study Funding page for more details.

The Leung Fund provides another avenue for obtaining funding to continue a project conceived of in ECE 445. Prior projects have also continued through various programs in the College of Engineering's Technology Entrepreneur Center programs, including the Cozad New Venture Competition.

VoxBox Robo-Drummer

Craig Bost, Nicholas Dulin, Drake Proffitt

VoxBox Robo-Drummer

Featured Project

Our group proposes to create robot drummer which would respond to human voice "beatboxing" input, via conventional dynamic microphone, and translate the input into the corresponding drum hit performance. For example, if the human user issues a bass-kick voice sound, the robot will recognize it and strike the bass drum; and likewise for the hi-hat/snare and clap. Our design will minimally cover 3 different drum hit types (bass hit, snare hit, clap hit), and respond with minimal latency.

This would involve amplifying the analog signal (as dynamic mics drive fairly low gain signals), which would be sampled by a dsPIC33F DSP/MCU (or comparable chipset), and processed for trigger event recognition. This entails applying Short-Time Fourier Transform analysis to provide spectral content data to our event detection algorithm (i.e. recognizing the "control" signal from the human user). The MCU functionality of the dsPIC33F would be used for relaying the trigger commands to the actuator circuits controlling the robot.

The robot in question would be small; about the size of ventriloquist dummy. The "drum set" would be scaled accordingly (think pots and pans, like a child would play with). Actuators would likely be based on solenoids, as opposed to motors.

Beyond these minimal capabilities, we would add analog prefiltering of the input audio signal, and amplification of the drum hits, as bonus features if the development and implementation process goes better than expected.

Project Videos