Final Demo :: ECE 445 - Senior Design Laboratory

Final Demo

Description

The Final Demo is the single most important measure (and assignment) for the success of your project. The evaluation is holistic, focused on whether your project is completed, well-designed, reliable, and usable. You will demo your project to your professor, at least one TA, and a few peer reviewers. Other guests (e.g. alumni, high school students, sponsors, or other department affiliates) may also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project by proving that all the requirements in their Requirements and Verification (RV) table are met. Students must bring a printed out version of their block diagram, high level requirements, and RV table. Credit will not be given for feature which cannot be demonstrated.

For tests that are lengthy or require equipment not available at the time of demo, students should have their lab notebooks or printouts ready to show testing data. For any portion of the project which does not function as specified, students should have hypotehses (and supporting evidence) of what is causing the problem. If your demo needs to happen somewhere that is not the Senior Design Lab, you must communicate this with your TA!

The design team should be ready to justify design decisions and discuss any technical aspect of the project or its performance (not just one's own responsibilities). Quantitative results are expected wherever applicable. The demo grade depends on the following general areas: See the Demo Grading Rubric for specific details, but in general, show the following:

  1. Completion: The project has been entirely completed.
  2. Integration: The project is well-integrated, looking more like a final product than a prototype.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.
  5. Polish & Attention to Detail: The project is well-polished with the user in mind. Good attention to detail is afforded to useability, presentation, and packaging.

 

Submission and Deadlines

Signing-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review as well.

Remotely Controlled Self-balancing Mini Bike

Will Chen, Eric Tang, Jiaming Xu

Featured Project

# Remotely Controlled Self-balancing Mini Bike

Team Members:

- Will Chen hongyuc5

- Jiaming Xu jx30

- Eric Tang leweit2

# Problem

Bike Share and scooter share have become more popular all over the world these years. This mode of travel is gradually gaining recognition and support. Champaign also has a company that provides this service called Veo. Short-distance traveling with shared bikes between school buildings and bus stops is convenient. However, since they will be randomly parked around the entire city when we need to use them, we often need to look for where the bike is parked and walk to the bike's location. Some of the potential solutions are not ideal, for example: collecting and redistributing all of the bikes once in a while is going to be costly and inefficient; using enough bikes to saturate the region is also very cost inefficient.

# Solution

We think the best way to solve the above problem is to create a self-balancing and moving bike, which users can call bikes to self-drive to their location. To make this solution possible we first need to design a bike that can self-balance. After that, we will add a remote control feature to control the bike movement. Considering the possibilities for demonstration are complicated for a real bike, we will design a scaled-down mini bicycle to apply our self-balancing and remote control functions.

# Solution Components

## Subsystem 1: Self-balancing part

The self-balancing subsystem is the most important component of this project: it will use one reaction wheel with a Brushless DC motor to balance the bike based on reading from the accelerometer.

MPU-6050 Accelerometer gyroscope sensor: it will measure the velocity, acceleration, orientation, and displacement of the object it attaches to, and, with this information, we could implement the corresponding control algorithm on the reaction wheel to balance the bike.

Brushless DC motor: it will be used to rotate the reaction wheel. BLDC motors tend to have better efficiency and speed control than other motors.

Reaction wheel: we will design the reaction wheel by ourselves in Solidworks, and ask the ECE machine shop to help us machine the metal part.

Battery: it will be used to power the BLDC motor for the reaction wheel, the stepper motor for steering, and another BLDC motor for movement. We are considering using an 11.1 Volt LiPo battery.

Processor: we will use STM32F103C8T6 as the brain for this project to complete the application of control algorithms and the coordination between various subsystems.

## Subsystem 2: Bike movement, steering, and remote control

This subsystem will accomplish bike movement and steering with remote control.

Servo motor for movement: it will be used to rotate one of the wheels to achieve bike movement. Servo motors tend to have better efficiency and speed control than other motors.

Stepper motor for steering: in general, stepper motors have better precision and provide higher torque at low speeds than other motors, which makes them perfect for steering the handlebar.

ESP32 2.4GHz Dual-Core WiFi Bluetooth Processor: it has both WiFi and Bluetooth connectivity so it could be used for receiving messages from remote controllers such as Xbox controllers or mobile phones.

## Subsystem 3: Bike structure design

We plan to design the bike frame structure with Solidworks and have it printed out with a 3D printer. At least one of our team members has previous experience in Solidworks and 3D printing, and we have access to a 3D printer.

3D Printed parts: we plan to use PETG material to print all the bike structure parts. PETG is known to be stronger, more durable, and more heat resistant than PLA.

PCB: The PCB will contain several parts mentioned above such as ESP32, MPU6050, STM32, motor driver chips, and other electronic components

## Bonus Subsystem4: Collision check and obstacle avoidance

To detect the obstacles, we are considering using ultrasonic sensors HC-SR04

or cameras such as the OV7725 Camera function with stm32 with an obstacle detection algorithm. Based on the messages received from these sensors, the bicycle could turn left or right to avoid.

# Criterion For Success

The bike could be self-balanced.

The bike could recover from small external disturbances and maintain self-balancing.

The bike movement and steering could be remotely controlled by the user.

Project Videos