Final Demo :: ECE 445 - Senior Design Laboratory

Final Demo

Description

The Final Demo is the single most important measure (and assignment) for the success of your project. The evaluation is holistic, focused on whether your project is completed, well-designed, reliable, and usable. You will demo your project to your professor, at least one TA, and a few peer reviewers. Other guests (e.g. alumni, high school students, sponsors, or other department affiliates) may also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project by proving that all the requirements in their Requirements and Verification (RV) table are met. Students must bring a printed out version of their block diagram, high level requirements, and RV table. Credit will not be given for feature which cannot be demonstrated.

For tests that are lengthy or require equipment not available at the time of demo, students should have their lab notebooks or printouts ready to show testing data. For any portion of the project which does not function as specified, students should have hypotehses (and supporting evidence) of what is causing the problem. If your demo needs to happen somewhere that is not the Senior Design Lab, you must communicate this with your TA!

The design team should be ready to justify design decisions and discuss any technical aspect of the project or its performance (not just one's own responsibilities). Quantitative results are expected wherever applicable. The demo grade depends on the following general areas: See the Demo Grading Rubric for specific details, but in general, show the following:

  1. Completion: The project has been entirely completed.
  2. Integration: The project is well-integrated, looking more like a final product than a prototype.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.
  5. Polish & Attention to Detail: The project is well-polished with the user in mind. Good attention to detail is afforded to useability, presentation, and packaging.

 

Submission and Deadlines

Signing-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review as well.

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.