Final Report

Video Lecture

Video, Slides

Description:

The Final Report Guidelines are the primary reference document for this assignment.

Requirements and Grading:

The Final Report is held to professional standards of language and format and is evaluated by staff in the ECE Editorial Services, who also check theses and dissertations for the department. The report is also evaluated for technical content and organization by the course staff. The Grading Rubrics are available for both English/Formatting and Technical Content , but here are some pointers:

  1. If you didn't click the link above, the Final Report Guidelines should be your first stop.
  2. Use a template to help get the formatting right (Microsoft Word template or LaTeX template).
  3. Since your Final Report is similar in purpose to a thesis, you may find the Thesis Writing Guidelines helpful for style and formatting.
  4. For citations, you may also find the IEEE Citation Reference guide useful.
  5. Please note the maximum number of pages (20) allowed for the final report. This does not include your references or appendices.You will be penalized for going over the maximum number of pages and/or not following the prescribed format.
  6. Submission and Deadlines:

    The Final Report document should be uploaded to My Project on PACE in PDF format by the deadline on the Calendar.

Prosthetic Control Board

Caleb Albers, Daniel Lee

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)

Board:

support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)

Sensor:

Addition of a temperature sensor to provide temperature feedback to the microcontroller.

Software:

change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.