Lab Notebook

Video, Slides

Keeping a professional record of your design work is a requirement of the course. If maintained properly, lab notebooks serve as an official and legal record of the development of the intellectual property related to your project. It also serves as a way to document and track changes to your design, results of all tests performed, and the effort you have put into your project. A well-kept notebook will simplify writing of all required documentation for this course (design review, final paper, etc) as all of the information in those documents should already exist in your notebook. Finally, keeping a notebook is simply good engineering practice and likely will be required by future employers, so it is a good idea to get in the habit of maintaining one now.

The Book

Any notebook with permanent bindings designed for laboratory record keeping is acceptable. Notebooks should have pre-numbered pages and square grids on their pages. We will not accept normal spiral-bound notebooks, as these are not permissible in court since pages can be easily replaced. While most of you probably won't be taking your design to court, we want to teach you to get into the habit of keeping legally acceptable records. Some of you may decide you do want to patent your project, so it will be very beneficial to have given yourself the legal advantage from the start.

Electronic Notebook

Alternatively, lab notebooks may be kept digitally as Markdown documents in a Git repo on Github or Gitlab, as in the example below. See a complete example of a 445 Git repo here.

notebooks/
├── alex/
│   ├── README.md
│   └── an_image.png
├── pouya/
│   └── README.md
└── nick/
    ├── README.md
    └── another_image.png
	

Notebook entries:

Each complete entry should include:

  1. Date
  2. Brief statement of objectives for that session
  3. Record of what was done

The record will include equations, diagrams, and figures. These should be numbered for reference in the narrative portion of the book. Written entries and equations should appear on the right-hand page of each pair. Drawn figures, diagrams, and photocopies extracted from published sources should be placed on the left-hand side, which is graph-ruled. All separate documents should be permanently attached to the notebook. All hand-written entries must be made in pen.

Overall, the book should contain a record that is clear and complete, so that someone else can follow progress, understand problems, and understand decisions that were made in designing and executing the project.

What to include:

There is always something to record:

Suppose you are only "kicking around" design ideas for the project with someone, or scanning library sources. Your objective is what you're hoping to find. The record shows what you found or what you decided and why, even if it isn't final.

One of the most common errors is to fail to record these seemingly "unimportant" activities. Down the road, they may prove crucial in understanding when and where a particular idea came from.

Submission and Deadlines

Lab notebooks must be submitted at lab checkout on Reading Day. If you are unable to attend lab checkout, please make arrangements with your TA ahead of time.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!