Project Proposal

Video Lecture

Video, Slides

Description

The proposal outlines your project's motivation, design, requirements, ethics, and safety. The project proposal is an expansion on the information provided in the RFA. Use the following format:

  1. Introduction

    • Problem: One to two paragraphs detailing the problem statement. Include any relevant references to justify the existence or importance of the problem.
    • Solution: One to two paragraphs describing the solution. Give a high-level idea of what your solution is, then delve into detail as to how it is implemented. You do not have to commit to a particular implementation at this point, but your description should be explicit and concrete.
    • Visual Aid: A pictorial representation of your project that puts your solution in context. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.

      Sample visual aid for project which remaps GameCube buttons on the fly.

    • High-level requirements list: A list of three quantitative characteristics that this project must exhibit in order to solve the problem. Each high-level requirement must be stated in complete sentences and displayed as a bulleted list. Avoid mentioning "cost" as a high level requirement.
  2. Design
    • Block Diagram: Break your design down into blocks and assign these blocks into subsystems. Label voltages and data connections. Your microcontroller can live in multiple subsystems if you wish, as in the example below.

      Sample block diagram for electric longboard + remote

    • Subsystem Overview: A brief description of the function of each subsystem in the block diagram and explain how it connects with the other subsystems. Every subsystem in the block diagram should have its own paragraph.
    • Subsystem Requirements: For each subsystem in your block diagram, you should include a highly detailed block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any interfaces with other blocks must be defined clearly and quantitatively. Include a list of requirements where if any of these requirements were removed, the subsystem would fail to function. Good example: Power Subsystem must be able to supply at least 500mA to the rest of the system continuously at 5V +/- 0.1V.
    • Tolerance Analysis: Identify an aspect of your design that poses a risk to successful completion of the project. Demonstrate the feasibility of this component through mathematical analysis or simulation.
  3. Ethics and Safety
    Assess the ethical and safety issues relevant to your project. Consider both issues arising during the development of your project and those which could arise from the accidental or intentional misuse of your project. Specific ethical issues should be discussed in the context of the IEEE and/or ACM Code of Ethics. Cite, but do not copy the Codes. Explain how you will avoid ethical breaches. Cite and discuss relevant safety and regulatory standards as they apply to your project. Review state and federal regulations, industry standards, and campus policy. Identify potential safety concerns in your project.

Submission and Deadlines

The Project Proposal document should be uploaded to My Project on PACE in PDF format before the deadline listed on the Calendar.

Modularized Electronic Locker

Jack Davis, Joshua Nolan, Jake Pu

Modularized Electronic Locker

Featured Project

Group Member: Jianhao (Jake) Pu [jpu3], Joshua Nolan [jtnolan2], John (Jack) Davis [johnhd4]

Problem:

Students living off campus without a packaging station are affected by stolen packages all the time. As a result of privacy concerns and inconsistent deployment, public cameras in Champaign and around the world cannot always be relied upon. Therefore, it can be very difficult for victims to gather evidence for a police report. Most of the time, the value of stolen items is small and they are usually compensated by the sellers (Amazon and Apple are very understanding). However, not all deliveries are insured and many people are suffering from stolen food deliveries during the COVID-19 crisis. We need a low-cost solution that can protect deliveries from all vendors.

Solution Overview:

Our solution is similar to Amazon Hub Apartment Locker and Luxer One. Like these services, our product will securely enclose the package until the owners claim the contents inside. The owner of the contents can claim it using a phone number or a unique user identification code generated and managed by a cloud service.

The first difference we want to make from these competitors is cost. According to an article, the cost of a single locker is from $6000 - $20000. We want to minimize such costs so that we can replace the traditional mailbox. We talked to a Chinese manufacturer and got a hardware quote of $3000. We can squeeze this cost if we just design our own control module on ESP32 microcontrollers.

The second difference we want to make is modularity. We will have a sensor module, a control module, a power module and any number of storage units for hardware. We want to make standardized storage units that can be stacked into any configuration, and these storage units can be connected to a control module through a communication bus. The control module houses the hardware to open or close all of the individual lockers. A household can purchase a single locker and a control module just for one family while apartment buildings can stack them into the lockers we see at Amazon Hub. I think the hardware connection will be a challenge but it will be very effective at lowering the cost once we can massively manufacture these unit lockers.

Solution Components:

Storage Unit

Basic units that provide a locker feature. Each storage unit will have a cheap microcontroller to work as a slave on the communication bus and control its electronic lock (12V 36W). It has four connectors on top, bottom, left, and right sides for stackable configuration.

Control Unit

Should have the same dimension as one of the storage units so that it could be stacked with them. Houses ESP32 microcontroller to run control logics on all storage units and uses the built-in WiFi to upload data to a cloud server. If sensor units are detected, it should activate more security features accordingly.

Power Unit

Power from the wall or from a backup battery power supply and the associated controls to deliver power to the system. Able to sustain high current in a short time (36W for each electronic lock). It should also have protection against overvoltage and overcurrent.

Sensor Modules

Sensors such as cameras, motion sensors, and gyroscopes will parlay any scandalous activities to the control unit and will be able to capture a photo to report to authorities. Sensors will also have modularity for increased security capabilities.

Cloud Support

Runs a database that keeps user identification information and the security images. Pushes notification to end-users.

Criterion for Success:

Deliverers (Fedex, Amazon, Uber Eats, etc.) are able to open the locker using a touchscreen and a use- provided code to place their package inside. Once the package is inside of the locker, a message will be sent to the locker owner that their delivery has arrived. Locker owners are able to open the locker using a touchscreen interface. Owners are also able to change the passcode at any time for security reasons. The locker must be difficult to break into and offer theft protection after multiple incorrect password attempts.

Project Videos