Project Proposal

Video Lecture

Video, Slides

Description

The proposal outlines your project's motivation, design, requirements, ethics, and safety. The project proposal is an expansion on the information provided in the RFA. Use the following format:

  1. Introduction

    • Problem: One to two paragraphs detailing the problem statement. Include any relevant references to justify the existence or importance of the problem.
    • Solution: One to two paragraphs describing the solution. Give a high-level idea of what your solution is, then delve into detail as to how it is implemented. You do not have to commit to a particular implementation at this point, but your description should be explicit and concrete.
    • Visual Aid: A pictorial representation of your project that puts your solution in context. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.

      Sample visual aid for project which remaps GameCube buttons on the fly.

    • High-level requirements list: A list of three quantitative characteristics that this project must exhibit in order to solve the problem. Each high-level requirement must be stated in complete sentences and displayed as a bulleted list. Avoid mentioning "cost" as a high level requirement.
  2. Design
    • Block Diagram: Break your design down into blocks and assign these blocks into subsystems. Label voltages and data connections. Your microcontroller can live in multiple subsystems if you wish, as in the example below.

      Sample block diagram for electric longboard + remote

    • Subsystem Overview: A brief description of the function of each subsystem in the block diagram and explain how it connects with the other subsystems. Every subsystem in the block diagram should have its own paragraph.
    • Subsystem Requirements: For each subsystem in your block diagram, you should include a highly detailed block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any interfaces with other blocks must be defined clearly and quantitatively. Include a list of requirements where if any of these requirements were removed, the subsystem would fail to function. Good example: Power Subsystem must be able to supply at least 500mA to the rest of the system continuously at 5V +/- 0.1V.
    • Tolerance Analysis: Identify an aspect of your design that poses a risk to successful completion of the project. Demonstrate the feasibility of this component through mathematical analysis or simulation.
  3. Ethics and Safety
    Assess the ethical and safety issues relevant to your project. Consider both issues arising during the development of your project and those which could arise from the accidental or intentional misuse of your project. Specific ethical issues should be discussed in the context of the IEEE and/or ACM Code of Ethics. Cite, but do not copy the Codes. Explain how you will avoid ethical breaches. Cite and discuss relevant safety and regulatory standards as they apply to your project. Review state and federal regulations, industry standards, and campus policy. Identify potential safety concerns in your project.

Submission and Deadlines

The Project Proposal document should be uploaded to My Project on PACE in PDF format before the deadline listed on the Calendar.

Decentralized Systems for Ground & Arial Vehicles (DSGAV)

Mingda Ma, Alvin Sun, Jialiang Zhang

Featured Project

# Team Members

* Yixiao Sun (yixiaos3)

* Mingda Ma (mingdam2)

* Jialiang Zhang (jz23)

# Problem Statement

Autonomous delivery over drone networks has become one of the new trends which can save a tremendous amount of labor. However, it is very difficult to scale things up due to the inefficiency of multi-rotors collaboration especially when they are carrying payload. In order to actually have it deployed in big cities, we could take advantage of the large ground vehicle network which already exists with rideshare companies like Uber and Lyft. The roof of an automobile has plenty of spaces to hold regular size packages with magnets, and the drone network can then optimize for flight time and efficiency while factoring in ground vehicle plans. While dramatically increasing delivery coverage and efficiency, such strategy raises a challenging problem of drone docking onto moving ground vehicles.

# Solution

We aim at tackling a particular component of this project given the scope and time limitation. We will implement a decentralized multi-agent control system that involves synchronizing a ground vehicle and a drone when in close proximity. Assumptions such as knowledge of vehicle states will be made, as this project is aiming towards a proof of concepts of a core challenge to this project. However, as we progress, we aim at lifting as many of those assumptions as possible. The infrastructure of the lab, drone and ground vehicle will be provided by our kind sponsor Professor Naira Hovakimyan. When the drone approaches the target and starts to have visuals on the ground vehicle, it will automatically send a docking request through an RF module. The RF receiver on the vehicle will then automatically turn on its assistant devices such as specific LED light patterns which aids motion synchronization between ground and areo vehicles. The ground vehicle will also periodically send out locally planned paths to the drone for it to predict the ground vehicle’s trajectory a couple of seconds into the future. This prediction can help the drone to stay within close proximity to the ground vehicle by optimizing with a reference trajectory.

### The hardware components include:

Provided by Research Platforms

* A drone

* A ground vehicle

* A camera

Developed by our team

* An LED based docking indicator

* RF communication modules (xbee)

* Onboard compute and communication microprocessor (STM32F4)

* Standalone power source for RF module and processor

# Required Circuit Design

We will integrate the power source, RF communication module and the LED tracking assistant together with our microcontroller within our PCB. The circuit will also automatically trigger the tracking assistant to facilitate its further operations. This special circuit is designed particularly to demonstrate the ability for the drone to precisely track and dock onto the ground vehicle.

# Criterion for Success -- Stages

1. When the ground vehicle is moving slowly in a straight line, the drone can autonomously take off from an arbitrary location and end up following it within close proximity.

2. Drones remains in close proximity when the ground vehicle is slowly turning (or navigating arbitrarily in slow speed)

3. Drone can dock autonomously onto the ground vehicle that is moving slowly in straight line

4. Drone can dock autonomously onto the ground vehicle that is slowly turning

5. Increase the speed of the ground vehicle and successfully perform tracking and / or docking

6. Drone can pick up packages while flying synchronously to the ground vehicle

We consider project completion on stage 3. The stages after that are considered advanced features depending on actual progress.

Project Videos