Request for Approval

Description

The request for approval (RFA) is the very first step in successfully completing a senior design project. Before submitting your RFA, you must post your project idea to the Web Board using the "Idea" post type. Once your idea has been fleshed out through the Web Board, you can move on request for approval through PACE under the My Project page. Once submitted, your project will be cloned to the Web Board as "Project Request" post. You can edit the project on the My Project page, add your teammates and see comments from the instructors. The course staff may provide feedback on your idea (which will appear at the bottom of your project's page), or suggest changes in the scope of the project and ask you to re-submit an RFA. Based on your incorporation of feedback your project will be approved or rejected. If it is rejected, the My Project page will revert back to it's original format and your project will disappear.

Once the course staff has approved the project idea, you will receive instructions on how to submit your project through PACE, at which time you will be assigned a project number in the Projects list, a TA, and a locker in the lab. Once your project is approved, please go to the Projects page, log into the PACE system, and make sure all of the information is correct.

Video Lecture

Video, Slides

Requirements and Grading

The RFA is graded credit/no credit based on whether your project is approved before the deadline. Note that submitting an RFA before the deadline does not guarantee approval before the deadline. The RFA is submitted through PACE under the My Project page, and should be Markdown-formatted with the following information:

# Title

Team Members:
- Student 1 (netid)
- Student 2 (netid)
- Student 3 (netid)

# Problem

Describe the problem you want to solve and motivate the need.

# Solution

Describe your design at a high-level, how it solves the problem, and introduce the subsystems of your project.

# Solution Components

## Subsystem 1

Explain what the subsystem does.  Explicitly list what sensors/components you will use in this subsystem.  Include part numbers.

## Subsystem 2

## ...

# Criterion For Success

Describe high-level goals that your project needs to achieve to be effective.  These goals need to be clearly testable and not subjective.

Projects must be legal and ethical. They must have significant scope and complexity commensurate with the size of the team. This is, of course, a subjective assessment of the course staff. To gain some insight into this judgment, please browse projects from previous semesters. The project must involve the design of a significant hardware component at the circuit level. In exceptional cases, projects not meeting this criteria may be acceptable when augmented by a Special Circuit assignment (however this is typically a last resort).

Beyond these basic requirements, you have total discretion in proposing a project. This is a great opportunity for you to pursue your own interests. Since you choose your own projects, we expect a high level of enthusiasm from you and your team.

Submission and Deadlines

The RFA submission deadline may be found on the Course Calendar. Typically, approval of the RFA is due during the afternoon of the third Thursday of the semester.

Quick Tips and Helpful Hints

Posting: Choosing a project: Choosing partners: Some general project ideas that are fraught with pitfalls:

Backpack Buddy - Wearable Proximity/Incident Detection for Nighttime Safety

Jeric Cuasay, Emily Grob, Rahul Kajjam

Backpack Buddy - Wearable Proximity/Incident Detection for Nighttime Safety

Featured Project

# Backpack Buddy

Team Members:

- Student 1 (cuasay2)

- Student 2 (rkajjam2)

- Student 3 (eegrob2)

# Problem

The UIUC campus is relatively a safe place. We have emergency buttons throughout campus and security personnel available regularly. However, crime still occurs and affects students walking alone, especially at night. Staying up late at night working in a classroom or other building can lead to a long scary walk home. Especially when the weather is colder, the streets are generally less populated and walking home at night can feel more dangerous due to the isolation.

# Solution

A wearable system that uses night vision camera sensor and machine learning/intelligence image processing techniques to detect pedestrians approaching the user at an abnormal speed or angle that may be out of sight. The system would vibrate to alert them to look around and check their surroundings.

# Solution Components

## Subsystem 1 - Processing

Processing

Broadcom BCM2711 SoC with a 64-bit quad-core ARM Cortex-A72 processor or potentially an internal microprocessor such as the LPC15xx series for image processing and voltage step-down to various sensors and actuators

## Subsystem 2 - Power

Power

Converts external battery power to required voltage demands of on-system chips

## Subsystem 3 - Sensors

Sensors

Camera - Night Vision Camera Adjustable-Focus Module 5MP OV5647 to detect objects in the dark

Proximity sensor - detects obstacle distance before turning camera on, potentially ultrasonic or passive infrared sensors such as the HC-SR04

Haptic feedback - Vibrating Mini Motor Disc [ADA1201] to alert user something was identified

# Criterion For Success

The Backpack Buddy will provide an image based solution for identifying any imposing figure within the user's blind spots to help ensure the safety of our user. Our solution is unique as there currently no wearable visual monitoring solutions for night-time safety.

potential stuff:

Potentially: GNSS for location tracking, light sensor for outdoors identification, and heartbeat for user stress levels

camera stabilization

heat camera

Project Videos