Meeting with Your TA

Description

By the Thursday of the third week, you must have a project approved, and should be ready to get working! At this time, you'll need to log into PACE and submit your schedule for the semester. Please be sure to make this as accurate as possible because once it's submitted, it can only be changed manually. Making a block of your schedule red means that you are unavailable during that time.

Once each person on your team has submitted their schedule, your TA will be able to easily check for available times to schedule a weekly meeting. Your TA should contact you, usually by the fourth week, via email, to set up a weekly meeting schedule at mutual convenience. During the first weekly meeting, your TA will assign your team a locker and a lab kit.

Weekly meetings with your TA are required and will be held throughout the entire semester until demonstrations are completed. Your TA is your project manager. The "homework" of the course consists of preparing for the weekly meetings. Your TA will evaluate your lab notebook each week, provide feedback, and recommend improvements. At each meeting you will be expected to present your progress since your last meeting, plans for the coming week, and any technical or administrative questions you need to discuss with your TA. You are expected to arrive on time and prepared to make good use of your time with your TA. Your TA may require that each team member to fill out the Progress Report Template and submit it to them prior to each weekly meeting.

Requirements and Grading

Attendance and participation in weekly meetings is required and will affect Teamwork and Lab Notebook scores. If you can't make it to a particular weekly meeting, it is your responsibility to inform your TA prior to the meeting time and set up an alternate time.

Submission and Deadlines

Your schedule must be submitted by the end of the third week of class and you will receive an email from your TA shortly after. Your first meeting with your TA should be during the fourth week of the semester.

STRE&M: Automated Urinalysis (Pitched Project)

Gage Gulley, Adrian Jimenez, Yichi Zhang

STRE&M: Automated Urinalysis (Pitched Project)

Featured Project

Team Members:

- Gage Gulley (ggulley2)

- Adrian Jimenez (adrianj2)

- Yichi Zhang (yichi7)

The STRE&M: Automated Urinalysis project was pitched by Mukul Govande and Ryan Monjazeb in conjunction with the Carle Illinois College of Medicine.

#Problem:

Urine tests are critical tools used in medicine to detect and manage chronic diseases. These tests are often over the span of 24 hours and require a patient to collect their own sample and return it to a lab. With this inconvenience in current procedures, many patients do not get tested often, which makes it difficult for care providers to catch illnesses quickly.

The tedious process of going to a lab for urinalysis creates a demand for an “all-in-one” automated system capable of performing this urinalysis, and this is where the STRE&M device comes in. The current prototype is capable of collecting a sample and pushing it to a viewing window. However, once it gets to the viewing window there is currently not an automated way to analyze the sample without manually looking through a microscope, which greatly reduces throughput. Our challenge is to find a way to automate the data collection from a sample and provide an interface for a medical professional to view the results.

# Solution

Our solution is to build an imaging system with integrated microscopy and absorption spectroscopy that is capable of transferring the captured images to a server. When the sample is collected through the initial prototype our device will magnify and capture the sample as well as utilize an absorbance sensor to identify and quantify the casts, bacteria, and cells that are in the sample. These images will then be transferred and uploaded to a server for analysis. We will then integrate our device into the existing prototype.

# Solution Components

## Subsystem1 (Light Source)

We will use a light source that can vary its wavelengths from 190-400 nm with a sampling interval of 5 nm to allow for spectroscopy analysis of the urine sample.

## Subsystem2 (Digital Microscope)

This subsystem will consist of a compact microscope with auto-focus, at least 100x magnification, and have a digital shutter trigger.

## Subsystem3 (Absorbance Sensor)

To get the spectroscopy analysis, we also need to have an absorbance sensor to collect the light that passes through the urine sample. Therefore, an absorbance sensor is installed right behind the light source to get the spectrum of the urine sample.

## Subsystem4 (Control Unit)

The control system will consist of a microcontroller. The microcontroller will be able to get data from the microscope and the absorbance sensor and send data to the server. We will also write code for the microcontroller to control the light source. ESP32-S3-WROOM-1 will be used as our microcontroller since it has a built-in WIFI module.

## Subsystem5 (Power system)

The power system is mainly used to power the microcontroller. A 9-V battery will be used to power the microcontroller.

# Criterion For Success

- The overall project can be integrated into the existing STRE&M prototype.

- There should be wireless transfer of images and data to a user-interface (either phone or computer) for interpretation

- The system should be housed in a water-resistant covering with dimensions less than 6 x 4 x 4 inches

Project Videos