Project

# Title Team Members TA Documents Sponsor
13 Haptic Headset
Danny Pellikan
Isabella Huang
Tasho Madondo
Luoyan Li design_document1.pdf
design_document2.pdf
final_paper1.pdf
proposal1.pdf
proposal2.pdf
# Haptic Headset

Team Members:
- Tasho Madondo (madondo2)
- Isabella Huang (xhuang93)
- Danny Pellikan (djp8)

# Problem

Hearing is one of our most essential senses. Hearing is the only sensory system that allows us to know what is going on everywhere in our environment at once. This property of hearing offers great advantages for survival as most alerts can be heard before they are ever seen. Deaf individuals, and those hard of hearing, have lost those advantages; Due to this, they lack the awareness of their environment offered with sound. We aim to mitigate some of the struggles of those with hearing loss.

# Solution

As a solution, rather than relying on the sense of sound, they can use the sense of feeling to get information they need from their immediate surroundings with directional haptic feedback. Haptic feedback is the use of vibration to convey information to the user (for example play station controllers or phone notifications). The idea is to place individual vibration motors along the outer rings on each side of over-ear headphones or ear mufflers. When a loud enough sound is played from any direction to the user, each individual motor vibrates in a way to give the user a sense of directional feedback. The goal of this device is to give the user heads up on where to look to see where the sound came from regardless of how little they can hear from their surroundings.

# Solution Components

## Subsystem 1: Audio Sensing/Directionality/Sound Detection

The device will use microphones to pick up the sound from the surrounding environment. We currently have 1 idea for audio/directionality detection.
Method 1 Multiple Unidirectional Microphones: This method uses multiple small unidirectional microphones pointing in each direction on each ear to pick up the audio of the surrounding environment. Each sensor would then correspond to a direction so that, when triggered, the appropriate vibration motors will trigger corresponding to that sensor. The position of the sound sensors would be as follows: each earpiece (Left and Right) will have 9 sound sensors corresponding to the 8 directions around the ear (Front, Up, Down, Back, Front-Up, Front-Down, Back-Up, Back-Down) as well as the direction directly away from the ear (directly to the left or directly to the right)

Diagram of Outer Piece with Unidirectional Microphones - [https://mediaspace.illinois.edu/media/t/1_khyavyq1](url)

## Subsystem 2: Haptic Feedback

The information about a sound and where it is coming from is relayed through haptic feedback from the vibration motors along the ear. Vibration motors will be placed along the ring of each earpiece on both sides of the headphones. Each earpiece (left and right) will have 8 vibration motors around the ear (Front, Up, Down, Back, Front-Up, Front-Down, Back-Up, Back-Down). Based on the sensor's read, the corresponding vibration motors will trigger to give the impression of direction from the user. For example: Sound coming from directly to the left, will trigger the vibration motors on the left earpiece; Sound coming from above and behind, will trigger the Back-Up, Up, and Back vibration motors on both the left and right earpiece; Sound coming from above and in front but to the right, will trigger the right earpiece's Front-Up, Front, and Up vibration motors.

Diagram of Inner Piece with Vibration Motors - [https://mediaspace.illinois.edu/media/t/1_k664rq6s](url)

## Subsystem 3: Analog to Digital Microcontroller

This system will be used for taking the analog input from the unidirectional microphones and converting to a signal for the vibration motors. Consider the number of sensors being used we will most likely need an amplifier to for each microphone and analog to digital converter for the microcontroller.

# Criterion For Success

1. Audio Sensing: Sound sensors are able to pick up loud sound from the surrounding environment and determine the direction of the sound based on the trigger sensors.

2. Haptic Feedback: When given a direction, the appropriate vibration motors will trigger to inform the user of the direction.

3. Comfortable Fitting: The device fits well and comfortably on the user.

4. User Efficiency: User can effectively tell where external sound is coming from through the haptic feedback.

# More Diagrams of Device

Diagram of Device position of human head - [https://mediaspace.illinois.edu/media/t/1_byyz2p7u](url)

Diagram of Device attachment on over-ear headphones - [https://mediaspace.illinois.edu/media/t/1_bua29b7m](url)

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)