Project

# Title Team Members TA Documents Sponsor
53 AUTOMATIC POOL MONITOR AND REGULATOR
Arnold Ancheril
Raymond Chen
Swarna Jammalamadaka
Selva Subramaniam design_document3.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation1.pdf
proposal3.pdf
video
# Automatic Pool Monitor and Regulator

Team Members:
- Raymond Chen (rc18)
- Arnold Ancheril (arnolda2)
- Swarna Jammalamadaka (sjamma2)

# Problem

Describe the problem you want to solve and motivate the need.

In many public or residential pools, monitoring pool water quality involves physically taking chemical tests to test for factors such as temperature, pH, and chlorine levels. Many times these tests are taken by lifeguards in public pools and can be time-consuming and require shutting down the pool if these levels are too high or too low. Although there are products in the market that measure these factors, these products cost hundreds of dollars, and even rarer are products that automatically dispense necessary chemicals based on these monitors. This product will reduce costs over time and be easier to maintain for consumers.

# Solution

Describe your design at a high level, how it solves the problem, and introduce the subsystems of your project.

We want to create a product that monitors pool qualities using various sensors, a motor dispenser that releases chemicals into the pool to maintain water balance and other sensors that alert about temperature and the dispenser capacity. This way, the only thing that pool owners need to worry about is refilling the dispenser once in a while and not physically measuring and balancing the pool.

# Solution Components

## Water Quality/Component Sensing

The first subsystem will involve using a pH sensor, a temperature sensor, and a chlorine sensor to gather data about the water quality. The sensor data will be sent to the microcontroller, which does the closed-loop control system.
pH Sensor: Possible with LMP91200, but pending TA feedback
Temperature sensor: Water temperature sensor, with the sensor separate from electronics
Chlorine Sensor: Atlas Scientific EcoSense EC300 and RealTech Controls EMCS-CL2 are compatible with ESP32. Gravity CL2 Sensor compatible with arduino/raspberry pi


## Microcontroller

The second subsystem will determine what part of the pool needs to be changed and what part is in the acceptable values. If the temperature data is too high or too low, then the microcontroller will send out an alert to the user about the temperature differential. If the pH or Chlorine level is outside acceptable zones, it will calculate the volume of chemicals needed to be added to a specified pool size to revert these factors into an acceptable range, and then power a servo to dispense these chemicals. Finally, if the dispenser is low or out of chemicals, it will send an alert to the user to refill it.

Microcontroller: ESP32 (supports Bluetooth and WiFi for wireless alerts)

## Dispenser:

The dispenser will be stationed next to the water and will have three compartments for 3 different chemicals: an acidic compound such as sodium bisulfate, an alkaline basic compound such as sodium bicarbonate, and chlorine powder. These compartments will sit above a servo each, which will turn and let a set amount of compounds through with each rotation. The total amount will be the number of rotations x weight in each rotation. The dispenser will also have sensors for each compartment that will alert the microcontroller when the compartments are empty.

Servos: 3 servos for each compartment to accurately dispense compounds
Sensors: Optical sensor for each compartment

## Power

The project will be battery-powered and will be used to power the microcontroller and the servos

# Criterion For Success

Testing in a large pool might not be feasible in the scope of this course, but we can test our project using a smaller container of pool water and physically altering different factors.

The pool sensors must accurately measure the water quality and can be tested by manually changing the temperature, pH, or chlorine levels.
The microcontroller must be able to accurately calculate the amount of chemicals needed to change each factor by a certain amount. This can be testable by either seeing if adding the calculated component restores each factor to an acceptable level or printing the calculation to a screen and mathematically verifying the calculations.
The dispenser and servos must accurately dispense the correct amount of chemicals that the microcontroller calculated.

Electronic Mouse (Cat Toy)

Jack Casey, Chuangy Zhang, Yingyu Zhang

Electronic Mouse (Cat Toy)

Featured Project

# Electronic Mouse (Cat Toy)

# Team Members:

- Yingyu Zhang (yzhan290)

- Chuangy Zhang (czhan30)

- Jack (John) Casey (jpcasey2)

# Problem Components:

Keeping up with the high energy drive of some cats can often be overwhelming for owners who often choose these pets because of their low maintenance compared to other animals. There is an increasing number of cats being used for service and emotional support animals, and with this, there is a need for an interactive cat toy with greater accessibility.

1. Get cats the enrichment they need

1. Get cats to chase the “mouse” around

1. Get cats fascinated by the “mouse”

1. Keep cats busy

1. Fulfill the need for cats’ hunting behaviors

1. Interactive fun between the cat and cat owner

1. Solve the shortcomings of electronic-remote-control-mouses that are out in the market

## Comparison with existing products

- Hexbug Mouse Robotic Cat Toy: Battery endurance is very low; For hard floors only

- GiGwi Interactive Cat Toy Mouse: Does not work on the carpet; Not sensitive to cat touch; Battery endurance is very low; Can't control remotely

# Solution

A remote-controlled cat toy is a solution that allows more cat owners to get interactive playtime with their pets. With our design, there will be no need to get low to the ground to adjust it often as it will go over most floor surfaces and in any direction with help from a strong motor and servos that won’t break from wall or cat impact. To prevent damage to household objects it will have IR sensors and accelerometers for use in self-driving modes. The toy will be run and powered by a Bluetooth microcontroller and a strong rechargeable battery to ensure playtime for hours.

## Subsystem 1 - Infrared(IR) Sensors & Accelerometer sensor

- IR sensors work with radar technology and they both emit and receive Infrared radiation. This kind of sensor has been used widely to detect nearby objects. We will use the IR sensors to detect if the mouse is surrounded by any obstacles.

- An accelerometer sensor measures the acceleration of any object in its rest frame. This kind of sensor has been used widely to capture the intensity of physical activities. We will use this sensor to detect if cats are playing with the mouse.

## Subsystem 2 - Microcontroller(ESP32)

- ESP32 is a dual-core microcontroller with integrated Wi-Fi and Bluetooth. This MCU has 520 KB of SRAM, 34 programmable GPIOs, 802.11 Wi-Fi, Bluetooth v4.2, and much more. This powerful microcontroller enables us to develop more powerful software and hardware and provides a lot of flexibility compared to ATMegaxxx.

Components(TBD):

- Product: [https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32/8544298](url)

- Datasheet: [http://esp32.net](url)

## Subsystem 3 - App

- We will develop an App that can remotely control the mouse.

1. Control the mouse to either move forward, backward, left, or right.

1. Turn on / off / flashing the LED eyes of the mouse

1. keep the cat owner informed about the battery level of the mouse

1. Change “modes”: (a). keep running randomly without stopping; (b). the cat activates the mouse; (c). runs in cycles(runs, stops, runs, stops…) intermittently (mouse hesitates to get cat’s curiosity up); (d). Turn OFF (completely)

## Subsystem 4 - Motors and Servo

- To enable maneuverability in all directions, we are planning to use 1 servo and 2 motors to drive the robotic mouse. The servo is used to control the direction of the mouse. Wheels will be directly mounted onto motors via hubs.

Components(TBD):

- Metal Gear Motors: [https://www.adafruit.com/product/3802](url)

- L9110H H-Bridge Motor Driver: [https://www.adafruit.com/product/4489](url)

## Subsystem 5 - Power Management

- We are planning to use a high capacity (5 Ah - 10 Ah), 3.7 volts lithium polymer battery to enable the long-last usage of the robotic mouse. Also, we are using the USB lithium polymer ion charging circuit to charge the battery.

Components(TBD):

- Lithium Polymer Ion Battery: [https://www.adafruit.com/product/5035](url)

- USB Lithium Polymer Ion Charger: [https://www.adafruit.com/product/259](url)

# Criterion for Success

1. Can go on tile, wood, AND carpet and alternate

1. Has a charge that lasts more than 10 min

1. Is maneuverable in all directions(not just forward and backward)

1. Can be controlled via remote (App)

1. Has a “cat-attractor”(feathers, string, ribbon, inner catnip, etc.) either attached to it or drags it behind (attractive appearance for cats)

1. Retains signal for at least 15 ft away

1. Eyes flash

1. Goes dormant when caught/touched by the cats (or when it bumps into something), reactivates (and changes direction) after a certain amount of time

1. all the “modes” worked as intended

Project Videos