Project

# Title Team Members TA Documents Sponsor
45 Continuous Arteriovenous Fistula (AVF) Monitoring Device [PITCHED PROJECT]
Aryan Parikh
Rishab Rao Veldur
Satyansh Yeluri
Surya Vasanth design_document1.pdf
design_document2.pdf
final_paper1.pdf
other1.pdf
proposal1.pdf
# Continuous Arteriovenous Fistula (AVF) Monitoring Device

Team Members:
- Aryan Parikh (aparik31)
- Rishab Rao (rveldur2)
- Satyansh Yeluri (syeluri2)

# Problem

Arteriovenous Fistulas/Grafts (AVFs/AVGs) are crucial to patients with end-stage kidney disease. They allow for hemodialysis, which has significant mortality and quality of life benefits in younger patients. Between 2000 and 2020, the prevalent count of individuals receiving HD nearly doubled to $480,516. In older patients, it’s often considered a lifeline. However, AVFs are known to “go down”. They are susceptible to stenosis, and thrombosis, and enlargement over time, leading to high-output cardiac failure. Currently there is no format for continuous monitoring of these grafts, and when they thrombose in the acute setting, often go undetected for days, if not weeks. The cost range to create an AV fistula is also between $3,401-$5,189. Several studies have pointed out that early graft intervention can improve the salvage of these fistulas, prolonging their use and minimizing the number of additional surgeries required. Finally, studies have found that if grafts are not intervened within 7 days, there are significant long term mortality risks and poor patient outcomes.

https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease/1-incidence-prevalence-patient-characteristics-and-treatment-modalities

The basic tenet for vascular access monitoring and surveillance is that stenosis develop over variable intervals in the great majority of vascular accesses and, if detected and corrected, under dialysis can be minimized or avoided (dialysis dose protection) and the rate of thrombosis can be reduced.

https://www.ajkd.org/article/S0272-6386(06)00646-9/fulltext#relatedArticles

Problem Statement: Graft stenosis and thrombosis are the leading causes of loss of vascular access patency, with delay in treatment leading to loss of vascular access and increased mortality rates and decreased quality of life in patients with end-stage renal disease.

# Solution

AVFs are often embedded in the arm, where the radial artery and adjacent veins are involved in their creation. What clinicians use to determine fistula viability is palpation, where the palpable trill (or vibration) of the graft can be felt. In the context of vascular access for hemodialysis, a trill is often associated with the feeling of blood flow or the movement of blood through the graft. A strong, palpable trill suggests good blood flow through the access site, indicating that the fistula is functioning well.

The idea is to develop a device that can be attached as a patch adjacent to the fistula to sample this venous trill using auditory input and machine learning to gauge deviations from an initial baseline. The device would be placed initially and cross-referenced with the current gold standard of duplex ultrasound to establish a baseline. As the device lives with the patient, it will learn progressive changes in venous hum pattern (stenosis) that can provide information to clinicians on optimal follow-up. Otherwise, if it detects the absence of a hum (thrombosis) it will immediately alert the patient and provider for attention. Pitch should correspond with an increase in percentage of stenosis and be interpreted as more frequent oscillations in a pressure waveform over time.

# Solution Components

## Microphone

This subsystem would take in sound input from a small microphone to capture a signal underneath the skin and feed into a microprocessor input.

https://ieeexplore.ieee.org/document/7438386

TDK InvenSense T4076 & T4078 MEMS Microphones

## Microprocessor Unit

We will use an Attiny85 and supporting components on our PCB. We will have to add a micro usb programmer for the Attiny85 and then add bluetooth capabilities on top of that. The microcontroller will receive input from the Microphone Module which captures acoustic signals related to venous hum patterns. These signals are essentially sound waves produced by blood flow in veins. We will use an algorithm on the acquired data to help analyze the different frequency components present in the venous hum patterns. Then the microcontroller can analyze the frequency spectrum of the venous hum patterns. The microcontroller can then help us compare the identified patterns with predefined patterns associated with normal and abnormal venous conditions. Based on the comparison, the system can detect differences in the venous hum patterns. Depending on the detected differences, the microcontroller will generate an alert if needed.

## Power Subsystem

It will be a 5 V lithium ion battery. We will have to step down the voltage to 3.3 V. We have no need for battery recharging. We will also have supporting components for the battery.

# Criterion For Success

- Transmit audio to app
- Accuracy: Device is able to distinguish changes in fistula stenosis
- Achieve real time data transmission

Autonomous Sailboat

Riley Baker, Arthur Liang, Lorenzo Rodriguez Perez

Autonomous Sailboat

Featured Project

# Autonomous Sailboat

Team Members:

- Riley Baker (rileymb3)

- Lorenzo Pérez (lr12)

- Arthur Liang (chianl2)

# Problem

WRSC (World Robotic Sailing Championship) is an autonomous sailing competition that aims at stimulating the development of autonomous marine robotics. In order to make autonomous sailing more accessible, some scholars have created a generic educational design. However, these models utilize expensive and scarce autopilot systems such as the Pixhawk Flight controller.

# Solution

The goal of this project is to make an affordable, user- friendly RC sailboat that can be used as a means of learning autonomous sailing on a smaller scale. The Autonomous Sailboat will have dual mode capability, allowing the operator to switch from manual to autonomous mode where the boat will maintain its current compass heading. The boat will transmit its sensor data back to base where the operator can use it to better the autonomous mode capability and keep track of the boat’s position in the water. Amateur sailors will benefit from the “return to base” functionality provided by the autonomous system.

# Solution Components

## On-board

### Sensors

Pixhawk - Connect GPS and compass sensors to microcontroller that allows for a stable state system within the autonomous mode. A shaft decoder that serves as a wind vane sensor that we plan to attach to the head of the mast to detect wind direction and speed. A compass/accelerometer sensor and GPS to detect the position of the boat and direction of travel.

### Actuators

2 servos - one winch servo that controls the orientation of the mainsail and one that controls that orientation of the rudder

### Communication devices

5 channel 2.4 GHz receiver - A receiver that will be used to select autonomous or manual mode and will trigger orders when in manual mode.

5 channel 2.4 GHz transmitter - A transmitter that will have the ability to switch between autonomous and manual mode. It will also transfer servos movements when in manual mode.

### Power

LiPo battery

## Ground control

Microcontroller - A microcontroller that records sensor output and servo settings for radio control and autonomous modes. Software on microcontroller processes the sensor input and determines the optimum rudder and sail winch servo settings needed to maintain a prescribed course for the given wind direction.

# Criterion For Success

1. Implement dual mode capability

2. Boat can maintain a given compass heading after being switched to autonomous mode and incorporates a “return to base” feature that returns the sailboat back to its starting position

3. Boat can record and transmit servo, sensor, and position data back to base

Project Videos