Project

# Title Team Members TA Documents Sponsor
55 Rodent Deterrent and classification system
Jung Ki Lee
Mankeerat Sidhu
Rishab Vivekanandh
Angquan Yu design_document1.pdf
design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pdf
proposal2.pdf
proposal1.pdf
video
Team Members -

Mankeerat Sidhu,
Jung Ki Lee,
Rishab

Problem -

Every year, in late summer and fall, thousands and millions of backyards, lawns, golf courses and open grass fields suffer from rodents and birds digging the ground in search for earthworms, soil-dwelling insects, and insect larvae (grubs) ruining the grass and leaving behind large patches of loose turf. This is not only a huge problem for the grass farming industry but also for every backyard ruining the aesthetic pleasingness and plants grown on the lawn. The current deterrent methods are technologically naive including of just a motion sensor, lights and loud sounds which can leave the user unaware of the type of rodent affecting their lawn, loud noises at night and a deterrent that does not prevent lawn digging.

Solution -

We are proposing a rodent detection and deterrent system which comprises of many parts. Firstly using infrared and ultrasonic sensors on a rotating servo, we would detect for any rodent outside of the usual landscape of the lawn the device is placed in. The PI camera system would simultaneously work to take a clean shot of the rodent/bird and store it in the file system. If recognized to be a ground digging rodent, for the actual deterrent, our colored lights and localized speaker beeps would go in the direction of the rodent/bird rather than just in 1 direction like the previously commercialized methods. This would ensure rodent deterrent and also tell the user what type of animals are responsible for digging their lawn.


Criteria For Success -

To test for this method, we would set up our system on a surface and test using props of different types of animals. We need to showcase that the sensors can detect irregularity and movement outside of the known landscape, can take a photo of the rodent and then classify the rodent and then also on moving servos, send localized beeps and colored light beams towards the rodent to scare it away and realistically prevent it from digging the ground.

Equipment -

Arduino Uno,
Raspberry pi 4,
PIR sensor, Ultrasonic Sensor, PI camera module
L298N motor driver,
Servos,
Colored Light arrays,
Small speakers,
LCD display (radar showing interactive component),
Potentiometers and capacitors

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos