Project

# Title Team Members TA Documents Sponsor
73 Occupancy Counter
Aryan Mathur
Ashwin Provine
Tanmay Kant
Jialiang Zhang design_document1.pdf
final_paper1.docx
presentation1.pptx
proposal1.pdf
Team Members: Tanmay Kant (tkant2) Ashwin Provine (provine4) Aryan Mathur (aryanm6)

PROBLEM

In large building environments, managing energy consumption efficiently, particularly for heating, ventilation, and air conditioning (HVAC) systems, presents a significant challenge. HVAC systems often operate on a fixed schedule, with little regard for the actual occupancy of a space, leading to unnecessary energy use and increased operational costs. This inefficiency is especially pronounced in spaces like offices or small meeting rooms due to constant movement. The motivation for the occupancy counter project is to enable more intelligent and adaptive HVAC control by accurately tracking the number of people in a given space. Our experience in the ECE391 Lab (ECEB3026) was a perfect example of HVAC not recognizing the amount of students working late in the lab, with temperature fluctuating constantly. By aligning HVAC operations with real-time occupancy levels, this technology aims to significantly reduce energy consumption and operational costs for large buildings. Achieving precise occupancy counts allows for the HVAC system to adapt its output to the current need, ensuring that energy is not wasted heating, cooling, or ventilating spaces that are not in use or are only partially occupied. Additionally, this system supports a more sustainable approach to building management by reducing the carbon footprint associated with unnecessary energy use.

SOLUTION

Our project is an occupancy counter for rooms. It will utilize [a] Time of Flight Sensor Module(s) for the recognition of room occupants, where we will either use one module, splitting between two zones, or use two modules in order to determine whether the target is entering or exiting the room. The brains behind the sensor will be a WiFi-enabled Arduino Board that will decide the direction of the person’s transit, keeping track of how many people are present in the room. It will update a web interface that can be connected to by any user. The whole device will be powered by USB power brick(s).

SOLUTION COMPONENTS

Control Unit “The ESP8266 is a high-performance wireless SOC that offers maximum utility at the lowest cost and unlimited possibilities for embedding WiFi functionality into other systems.” This module will be the brain and mouth of our project, where data received will be broken down into a few key components, calculated, and sent out as a summary. The data will be analyzed to decide whether the target is moving from Zone 1 to Zone 2 or conversely. From there, the brain will add or subtract to the room count. Once this is complete, the data will be beamed via WiFi to a digital display (monitor, tablet, phone).

Sensor(s) “The VL53L1X is a state-of-the-art, Time-of-Flight (ToF), laser-ranging sensor, enhancing the ST FlightSense™ product family. It is the fastest miniature ToF sensor on the market with accurate ranging up to 4 m and fast ranging frequency up to 50 Hz.” This module acts as the eyes for our project, where the timing of a person crossing the tracked region will be acted upon using a state machine to see the current status.

For example: Entrance ----- Zone 1 ----- Zone 2 ----- Room Stat. A Stat. B Stat. C Stat. D When a person enters, their status will change from A, B, C, to D finally. Should they be exiting, their status will change from D, C, B, to A finally. If a person reaches a status of B or C, but does not continue their transit entering or exiting, respectively, we will not update the counter of the room since the occupancy has not changed.

Power This is the simplest part of the build, where we will use a USB-enabled power brick to provide power to the modules and connect it through a slim and long USB cable. The power for the VL53L1X will be between 2.8V to 5.5V, with the voltage properly regulated by the sensor carrier board while the power for the ESP8266 will be a standard 3.3V input, both powered by DC current.

CRITERION FOR SUCCESS

Exactness/error of count: the count must be exact for up to six occupants, and correct within plus/minus of one person for up to twelve. Since this project is being used as a dependency for a much bigger system, precision and accuracy are important. The actual display should update between two to ten times per minute. This is to ensure that our count is considered live and makes an impact on the energy-saving and HVAC procedures that will ensue. Output data will be transferred via a wireless (WiFi) connection to a display. The sensor we are using has a built-in web interface that can be enabled during setup which will allow for universal access for users of the project.

Automatic Piano Tuner

Joseph Babbo, Colin Wallace, Riley Woodson

Automatic Piano Tuner

Featured Project

# Automatic Piano Tuner

Team Members:

- Colin Wallace (colinpw2)

- Riley Woodson (rileycw2)

- Joseph Babbo (jbabbo2)

# Problem

Piano tuning is a time-consuming and expensive process. An average piano tuning will cost in the $100 - $200 range and a piano will have to be retuned multiple times to maintain the correct pitch. Due to the strength required to alter the piano pegs it is also something that is difficult for the less physically able to accomplish.

# Solution

We hope to bring piano tuning to the masses by creating an easy to use product which will be able to automatically tune a piano by giving the key as input alongside playing the key to get the pitch differential and automatically turning the piano pegs until they reach the correct note.

# Solution Components

## Subsystem 1 - Motor Assembly

A standard tuning pin requires 8-14 nm of torque to successfully tune. We will thus need to create a motor assembly that is able to produce enough torque to rotate standard tuning pins.

## Subsystem 2 - Frequency Detector/Tuner

The device will use a microphone to gather audio measurements. Then a microprocessor processes the audio data to detect the pitch and determine the difference from the desired frequency. This can then generate instructions for the motor; direction to turn pegs and amount to turn it by.

## Subsystem 3 - User Interface/Display Panel

A small but intuitive display and button configuration can be used for this device. It will be required for the user to set the key being played using buttons on the device and reading the output of the display. As the device will tune by itself after hearing the tone, all that is required to display is the current key and octave. A couple of buttons will suffice to be able to cycle up and down keys and octaves.

## Subsystem 4 - Replaceable Battery/Power Supply

Every commercial product should use standard replaceable batteries, or provide a way for easy charging. As we want to develop a handheld device, so that the device doesn’t have to drag power wires into the piano, we will need a rechargeable battery pack.

# Criterion For Success

The aim of the Automatic Piano Tuner is to allow the user to automatically tune piano strings based on a key input alongside playing a note. We have several goals to help us meet this aim:

- Measure pitch accurately, test against known good pitches

- Motor generates enough torque to turn the pegs on a piano

- Tuner turns correctly depending on pitch

- Easy tuning of a piano by a single untrained person

Project Videos