Project

# Title Team Members TA Documents Sponsor
57 Consumer device which indicates real-time signals [Pitched Project]
Bipin Ghimire
Brian Oh
Sakar Karki
Jialiang Zhang
#Problem: The urgent challenge of climate change has driven focus on energy production's carbon intensity. Yet, the real-time carbon impact of electricity consumption remains obscure to consumers. Existing models do not provide instantaneous feedback on the carbon intensity (CO2e/MWh) of electricity from local grids. This gap prevents consumers from making informed decisions to reduce their carbon footprint actively.

#Solution We propose a real-time carbon intensity indicator for residential consumers. This device will visually and audibly alert users to the current and changing carbon intensity of their local grid's electricity. The product will leverage this data to prompt automated energy consumption reduction during high grid strain or suggest energy-efficient appliances.

The pitch states “the function would be to get a residential electricity consumer to see and hear an indicator, whether via light, notification popup, or a sound which alerts them to either a current state or a changing state of real-time carbon intensity on their local grid. As the basic device matures, the business would be built around using this information to automate reductions in energy consumption overall or at times of grid strain, or identify more energy efficiency appliances, both with direct carbon reduction impacts.” Green, yellow, and red LEDs to show good, OK, bad, and a similar set of sounds. The product is wifi-enabled wall plug with a light and speaker controlled by a small circuit.

#Solution Components ##Subsystem 1: Real-Time Data Acquisition and Communication This subsystem will acquire real-time carbon intensity data from sources like ElectricityMaps, WattTime, and similar services. It will use the Wi-Fi module (ESP32) to fetch and communicate data to the indicator.

##Subsystem 2: User Interface Indicator Involves a set of LEDs (Green, Yellow, Red) and a speaker to provide visual and auditory feedback based on the real-time data. Part numbers: Green LED (WP710A10SGC), Yellow LED (WP710A10SYC), Red LED (WP710A10SRC), and a small speaker (CUI CMS-0361KLX). It will also provide a potential user input button (MDPSLFS) to trigger and automate energy-saving actions.

##Subsystem 3: Control and Automation Logic This will use a microcontroller (ESP32P) to process the data and control the LED and sound alerts. It will also interface with home automation systems to control energy consumption based on carbon intensity. AC prongs (Q-910) will also be used to be able to plug the device into the power outlet for power data and as a power source.

#Criterion For Success Our project's success will hinge on the following testable goals:

Accurate display of real-time carbon intensity with less than a 60-second lag from the data source. The ability to trigger and automate energy-saving actions in response to high carbon intensity readings. User-friendly interface that clearly communicates the current state and changes in carbon intensity to the consumer.

STRE&M: Automated Urinalysis (Pitched Project)

Gage Gulley, Adrian Jimenez, Yichi Zhang

STRE&M: Automated Urinalysis (Pitched Project)

Featured Project

Team Members:

- Gage Gulley (ggulley2)

- Adrian Jimenez (adrianj2)

- Yichi Zhang (yichi7)

The STRE&M: Automated Urinalysis project was pitched by Mukul Govande and Ryan Monjazeb in conjunction with the Carle Illinois College of Medicine.

#Problem:

Urine tests are critical tools used in medicine to detect and manage chronic diseases. These tests are often over the span of 24 hours and require a patient to collect their own sample and return it to a lab. With this inconvenience in current procedures, many patients do not get tested often, which makes it difficult for care providers to catch illnesses quickly.

The tedious process of going to a lab for urinalysis creates a demand for an “all-in-one” automated system capable of performing this urinalysis, and this is where the STRE&M device comes in. The current prototype is capable of collecting a sample and pushing it to a viewing window. However, once it gets to the viewing window there is currently not an automated way to analyze the sample without manually looking through a microscope, which greatly reduces throughput. Our challenge is to find a way to automate the data collection from a sample and provide an interface for a medical professional to view the results.

# Solution

Our solution is to build an imaging system with integrated microscopy and absorption spectroscopy that is capable of transferring the captured images to a server. When the sample is collected through the initial prototype our device will magnify and capture the sample as well as utilize an absorbance sensor to identify and quantify the casts, bacteria, and cells that are in the sample. These images will then be transferred and uploaded to a server for analysis. We will then integrate our device into the existing prototype.

# Solution Components

## Subsystem1 (Light Source)

We will use a light source that can vary its wavelengths from 190-400 nm with a sampling interval of 5 nm to allow for spectroscopy analysis of the urine sample.

## Subsystem2 (Digital Microscope)

This subsystem will consist of a compact microscope with auto-focus, at least 100x magnification, and have a digital shutter trigger.

## Subsystem3 (Absorbance Sensor)

To get the spectroscopy analysis, we also need to have an absorbance sensor to collect the light that passes through the urine sample. Therefore, an absorbance sensor is installed right behind the light source to get the spectrum of the urine sample.

## Subsystem4 (Control Unit)

The control system will consist of a microcontroller. The microcontroller will be able to get data from the microscope and the absorbance sensor and send data to the server. We will also write code for the microcontroller to control the light source. ESP32-S3-WROOM-1 will be used as our microcontroller since it has a built-in WIFI module.

## Subsystem5 (Power system)

The power system is mainly used to power the microcontroller. A 9-V battery will be used to power the microcontroller.

# Criterion For Success

- The overall project can be integrated into the existing STRE&M prototype.

- There should be wireless transfer of images and data to a user-interface (either phone or computer) for interpretation

- The system should be housed in a water-resistant covering with dimensions less than 6 x 4 x 4 inches

Project Videos