Project

# Title Team Members TA Documents Sponsor
61 Keyless Smart Lock (Secured Illini)
Andrew Ruiz
Bowen Cui
Sebastian Sovailescu
Sanjana Pingali design_document1.pdf
final_paper1.pdf
final_paper2.pdf
grading_sheet1.pdf
photo1.png
photo2.png
presentation1.pdf
proposal1.pdf
# Title
Keyless Smart Lock (Secured Illini)

# Team members

Sebastian Sovailescu (ss159)

Andrew Ruiz (ruiz25)

Bowen Cui (tianyuc3)

# Problem

In the darkest hours of the night, when the moon barely shines, grimy Chambana thieves creep up on bikes and snatch whatever they can: wheels, seats, and many times entire bicycles! Last semester, my bike was stolen right from in front of my apartment. My case is not isolated: according to data , hundreds of bikes are stolen every year in the CU area. For this reason, we want to design a smart bike lock that 1) deters thieves and 2) offers keyless capabilities.
# Solution


The proposed smart bike lock would include all the features of a conventional U-Lock (bolt cutter resistance, waterproof, etc.), but it would also come equipped with a loud siren that is triggered by unwanted tampering and real-time alerts to a cloud-based dashboard. To provide keyless capabilities, the MCU would include a Bluetooth chip that allows the user to enable/disable the lock using an app, and reset alarms.

# Solution Components

# # Subsystem 1 : Anti-Theft Subsystem

The accelerometer is used to detect tampering by recording unusual spikes in acceleration. Once an anomaly is detected, the alert system is triggered, which would activate the siren for a set amount of time. This would only occur when the FSM is in the armed state vs when in the unarmed state all sensors would be deactivated thus not leading to false alarms.

Microcontroller - ESP32-S3-WROOM-1U will interpret the readings from the accelerometer/gyroscope and activate the sirens when the readings are out of range.

Accelerometer - MPU6050 it has both accelerometer and gyroscope which would not only detect for sharp movement but also slower movement.

Siren -
PK-35N29WQ 12V 10mA relatively high power draw but in practice should not be active almost at all during typical usage can output 90dB

# # Keyless Locking:

The purpose of this system is to allow for keyless entry using a bluetooth capable device (phone). It should also allow for logging of past access attempts.The MCU keeps track of an FSM of two states, armed versus unarmed. In the locked and armed state, the microcontroller will switch between the locked and unlocked states based on a message over bluetooth


Components:
Bluetooth device - mobile phone with app to control locking of the bike and access a log of past unlocks or tampers.
Microcontroller - ESP32-S3-WROOM-1U - esp32 microcontroller to interface with the phone to control the locking and unlocking of the bike, and to log unlocks and tampers in conjunction with the accelerometer.

# # Subsystem 3: Power supply system
Our system is going to need 5V and 3.3V rails, so in order to reach out goal we will plan to use a Tenergy Rechargeable Battery and step up and down the voltages needed using asynchronous buck and boost converters to save on not needing as many signal amplifiers.

Components:

Battery - Samsung 21700 cells


# Criterion For Success
To achieve success for this project we will have a fully working locking mechanism with an app to access the locking mechanism as well as an alert system and BLE on the lock. We also will require the lock to have a siren to play to deter thieves. We also want to fully fledged out the app attached to our lock to see battery stats and to receive the alerts if it is being tampered with. If these core goals are completed we will then implement the app to include biking statistics such as movement, path traveled, etc as well as a GPS functionality on the lock to recover if lost.

Remotely Controlled Self-balancing Mini Bike

Will Chen, Eric Tang, Jiaming Xu

Featured Project

# Remotely Controlled Self-balancing Mini Bike

Team Members:

- Will Chen hongyuc5

- Jiaming Xu jx30

- Eric Tang leweit2

# Problem

Bike Share and scooter share have become more popular all over the world these years. This mode of travel is gradually gaining recognition and support. Champaign also has a company that provides this service called Veo. Short-distance traveling with shared bikes between school buildings and bus stops is convenient. However, since they will be randomly parked around the entire city when we need to use them, we often need to look for where the bike is parked and walk to the bike's location. Some of the potential solutions are not ideal, for example: collecting and redistributing all of the bikes once in a while is going to be costly and inefficient; using enough bikes to saturate the region is also very cost inefficient.

# Solution

We think the best way to solve the above problem is to create a self-balancing and moving bike, which users can call bikes to self-drive to their location. To make this solution possible we first need to design a bike that can self-balance. After that, we will add a remote control feature to control the bike movement. Considering the possibilities for demonstration are complicated for a real bike, we will design a scaled-down mini bicycle to apply our self-balancing and remote control functions.

# Solution Components

## Subsystem 1: Self-balancing part

The self-balancing subsystem is the most important component of this project: it will use one reaction wheel with a Brushless DC motor to balance the bike based on reading from the accelerometer.

MPU-6050 Accelerometer gyroscope sensor: it will measure the velocity, acceleration, orientation, and displacement of the object it attaches to, and, with this information, we could implement the corresponding control algorithm on the reaction wheel to balance the bike.

Brushless DC motor: it will be used to rotate the reaction wheel. BLDC motors tend to have better efficiency and speed control than other motors.

Reaction wheel: we will design the reaction wheel by ourselves in Solidworks, and ask the ECE machine shop to help us machine the metal part.

Battery: it will be used to power the BLDC motor for the reaction wheel, the stepper motor for steering, and another BLDC motor for movement. We are considering using an 11.1 Volt LiPo battery.

Processor: we will use STM32F103C8T6 as the brain for this project to complete the application of control algorithms and the coordination between various subsystems.

## Subsystem 2: Bike movement, steering, and remote control

This subsystem will accomplish bike movement and steering with remote control.

Servo motor for movement: it will be used to rotate one of the wheels to achieve bike movement. Servo motors tend to have better efficiency and speed control than other motors.

Stepper motor for steering: in general, stepper motors have better precision and provide higher torque at low speeds than other motors, which makes them perfect for steering the handlebar.

ESP32 2.4GHz Dual-Core WiFi Bluetooth Processor: it has both WiFi and Bluetooth connectivity so it could be used for receiving messages from remote controllers such as Xbox controllers or mobile phones.

## Subsystem 3: Bike structure design

We plan to design the bike frame structure with Solidworks and have it printed out with a 3D printer. At least one of our team members has previous experience in Solidworks and 3D printing, and we have access to a 3D printer.

3D Printed parts: we plan to use PETG material to print all the bike structure parts. PETG is known to be stronger, more durable, and more heat resistant than PLA.

PCB: The PCB will contain several parts mentioned above such as ESP32, MPU6050, STM32, motor driver chips, and other electronic components

## Bonus Subsystem4: Collision check and obstacle avoidance

To detect the obstacles, we are considering using ultrasonic sensors HC-SR04

or cameras such as the OV7725 Camera function with stm32 with an obstacle detection algorithm. Based on the messages received from these sensors, the bicycle could turn left or right to avoid.

# Criterion For Success

The bike could be self-balanced.

The bike could recover from small external disturbances and maintain self-balancing.

The bike movement and steering could be remotely controlled by the user.

Project Videos