Project

# Title Team Members TA Documents Sponsor
8 HARMONEX
Alan Lu
David Song
Rubin Du
Haocheng Bill Yang design_document1.pdf
final_paper1.pdf
other1.pptx
other2.docx
other3.docx
photo1.jpg
proposal1.pdf
video1.mp4
**Team**

Alan Lu -- jialin8

Rubin Du -- rd25

**Problem**

Lifting and carrying heavy objects is a common but physically demanding task faced in both personal and industrial environments. Whether it is a person at home carrying groceries or a logistics worker handling cargo, repetitive lifting puts stress on the musculoskeletal system and can result in fatigue, reduced productivity, and even long-term injuries. Existing exoskeleton solutions often focus on industrial use, but they suffer from limited backdrivability, high weight, or overly complex designs that prevent practical everyday use. A lightweight, safe, and efficient solution is needed to reduce the physical burden of lifting while maintaining user freedom of movement.

**Solution**

Our team proposes the development of a wearable exoskeleton system designed to assist users in lifting objects of up to 10 kilograms with minimal effort. The system employs a hybrid actuation strategy that combines the strengths of both a BLDC motor and a servo motor: the BLDC provides the torque required for large-angle lifting motions, while the servo supplies stable holding torque to maintain the lifted position without excess energy drain. The BLDC goes through a 64:1 planetary gear set to amplify torque, and the servo motor goes through a moveable linkage system to create sufficient mechanical advantage to further reduce the load on the motor. A detachable drivetrain allows the user to disengage the actuation system, enabling free arm movement when lifting support is not required. The skeleton itself is lightweight, manufactured using carbon-fiber-reinforced nylon (PA-CF), ensuring durability and comfort. This modular design starts with elbow actuation and can be scaled to include shoulder actuation, broadening its application.

**Solution Components**

**Subsystem 1: Mechanical Skeleton and Drivetrain**
- Lightweight PA-CF composite structure, under 3 kg excluding the battery.
- Hybrid drivetrain using BLDC with planetary gear for motion and servo motor for holding.
- Drivetrain disengagement mechanism for free arm movement.
- Moveable armor integrated with a linkage system on the drivetrain that elaborately moves upper limb armor to avoid structural interference.

**Subsystem 2: Actuation and Power System**
- Actuated by BLDC + servo combination for efficiency and safety.
- Powered by a 6S LiPo battery (~200 Wh), providing several hours of continuous assistance.
- Custom PCB with DC-DC buck converters for peripheral loads and power distribution.
- Thermal management through ventilation and optional forced convection.

**Subsystem 3: Control and Signal Processing**
- Joint actuation regulated through PID controllers.
- User intent detected via EMG sensors integrated into the arm.
- Signal conditioning pipeline: Kalman filter → Chebyshev low-pass filter → controller input.
- Optional manual override via a simple forearm-mounted control panel.
- Microcontroller and peripheral signals integrated on a customized PCB/FPGA.

**Subsystem 4: Peripherals**
- Armor ambient light will be integrated into the shell of the skeleton for aesthetics.
- Ventilation port openings will be controlled by microservos to ensure good heat dissipation.
- A manual control panel will be placed on the lower limb skeleton to include manual operations and emergency switches.
- TPU-based soft pads inside the skeleton to provide a comfort experience for the user.

**Scalability and Modularity**
- The initial prototype targets elbow actuation.
- Design is scalable to include shoulder actuation grounded to chest armor.
- The modular approach ensures meaningful demonstration even if full-body integration is not achieved.

**Criterion for Success**

The final solution will be a wearable exoskeleton capable of assisting the user in lifting and holding objects up to 10 kg through a dual-actuation BLDC–servo system with a detachable drivetrain for free arm movement, powered by an onboard 6S battery, lightweight (under 3 kg excluding the battery), and controlled via EMG signals or a manual override panel to ensure safe, efficient, and natural operation.

Modularized Electronic Locker

Jack Davis, Joshua Nolan, Jake Pu

Modularized Electronic Locker

Featured Project

Group Member: Jianhao (Jake) Pu [jpu3], Joshua Nolan [jtnolan2], John (Jack) Davis [johnhd4]

Problem:

Students living off campus without a packaging station are affected by stolen packages all the time. As a result of privacy concerns and inconsistent deployment, public cameras in Champaign and around the world cannot always be relied upon. Therefore, it can be very difficult for victims to gather evidence for a police report. Most of the time, the value of stolen items is small and they are usually compensated by the sellers (Amazon and Apple are very understanding). However, not all deliveries are insured and many people are suffering from stolen food deliveries during the COVID-19 crisis. We need a low-cost solution that can protect deliveries from all vendors.

Solution Overview:

Our solution is similar to Amazon Hub Apartment Locker and Luxer One. Like these services, our product will securely enclose the package until the owners claim the contents inside. The owner of the contents can claim it using a phone number or a unique user identification code generated and managed by a cloud service.

The first difference we want to make from these competitors is cost. According to an article, the cost of a single locker is from $6000 - $20000. We want to minimize such costs so that we can replace the traditional mailbox. We talked to a Chinese manufacturer and got a hardware quote of $3000. We can squeeze this cost if we just design our own control module on ESP32 microcontrollers.

The second difference we want to make is modularity. We will have a sensor module, a control module, a power module and any number of storage units for hardware. We want to make standardized storage units that can be stacked into any configuration, and these storage units can be connected to a control module through a communication bus. The control module houses the hardware to open or close all of the individual lockers. A household can purchase a single locker and a control module just for one family while apartment buildings can stack them into the lockers we see at Amazon Hub. I think the hardware connection will be a challenge but it will be very effective at lowering the cost once we can massively manufacture these unit lockers.

Solution Components:

Storage Unit

Basic units that provide a locker feature. Each storage unit will have a cheap microcontroller to work as a slave on the communication bus and control its electronic lock (12V 36W). It has four connectors on top, bottom, left, and right sides for stackable configuration.

Control Unit

Should have the same dimension as one of the storage units so that it could be stacked with them. Houses ESP32 microcontroller to run control logics on all storage units and uses the built-in WiFi to upload data to a cloud server. If sensor units are detected, it should activate more security features accordingly.

Power Unit

Power from the wall or from a backup battery power supply and the associated controls to deliver power to the system. Able to sustain high current in a short time (36W for each electronic lock). It should also have protection against overvoltage and overcurrent.

Sensor Modules

Sensors such as cameras, motion sensors, and gyroscopes will parlay any scandalous activities to the control unit and will be able to capture a photo to report to authorities. Sensors will also have modularity for increased security capabilities.

Cloud Support

Runs a database that keeps user identification information and the security images. Pushes notification to end-users.

Criterion for Success:

Deliverers (Fedex, Amazon, Uber Eats, etc.) are able to open the locker using a touchscreen and a use- provided code to place their package inside. Once the package is inside of the locker, a message will be sent to the locker owner that their delivery has arrived. Locker owners are able to open the locker using a touchscreen interface. Owners are also able to change the passcode at any time for security reasons. The locker must be difficult to break into and offer theft protection after multiple incorrect password attempts.

Project Videos