Project

# Title Team Members TA Documents Sponsor
22 Adherascent
Dhiraj Dayal Bijinepally
Hardhik Tarigonda
Jonathan Liu
Shiyuan Duan design_document1.pdf
final_paper1.pdf
proposal1.pdf
TITLE ADHERASCENT

Team Members:

Jonathan Liu (jliu268)
Hardhik Tarigonda (Htarig2)
Dhiraj Bijinepally (Ddb3)
PROBLEM

Approximately 66% of adults in the United States take prescription medication. These can range from painkillers after surgery to essential life saving drugs. Common between all of these medications is the importance of taking them on time and on a schedule to maximize effectiveness. Adherascent is a program/device that helps individuals remember to take their medications. This is primarily aimed towards older adults, however anyone can use this device if they require it.

SOLUTION

Adherascent is a system composed of three subsystems: a wearable scent device, a mobile application, and a smart pillbox. The app provides the initial notification. If the notification is not addressed, the wearable escalates reminders using scent cues. The pillbox provides clear, per-compartment visual cues to indicate which medication should be taken, and it allows the user to confirm intake.

SOLUTION COMPONENTS

Adherascent consists of two main components. The phone application that interacts with the wearable device and the scent-releasing mechanism attached to a wearable device.

SUBSYSTEM 1

The wearable device acts as a second reminder to take medication. Instead of relying solely on a single cue such as audio or visual, Adherascent utilizes the sense of smell to prompt action. At first, the app reminds the individual to take their medication. If the person dismisses the notification and takes their medication, the wearable device will not activate. However, if the notification is left unaddressed for over 5 minutes, the device activates. The Adherascent wearable emits a scent with varying intensity to escalate urgency. The working idea is to implement this using clock cycles: 1000 cycles: scent is initially released into the air.

2000 cycles: scent increases in intensity.

3000 cycles: scent reaches maximum intensity to strongly notify the user.

This approach ensures reminders are multi-sensory and persistent, reducing the chance of a missed dose.

We plan on utilizing technology similar to electronic air fresheners to emit the scent. The acceptable time before ramping the scent intensity depends on the nature of the individuals condition. If 5r medicine is urgent, it could skip the ramping process and immediately emit at maximum intensity from the start. It is possible that we can add a function in the app to adjust the time between reminders and scent intensity.

SUBSYSTEM 2

The mobile app manages medication schedules and reminders. It sends a notification at the correct time and provides the first opportunity for the user to act. If the user dismisses the notification, the reminder is considered addressed, and no further action is taken.

If the notification is ignored, the app sends a signal via Bluetooth to both the wearable device and the smart pillbox to activate.

This central coordination ensures all subsystems work together to escalate reminders only when necessary.

SUBSYSTEM 3

The smart pillbox provides a direct, physical reminder by lighting up the specific compartment corresponding to the medication due at that day and time. This not only alerts the user but also guides them to the correct pill, reducing confusion or mistakes. The pillbox also includes a confirmation method (such as a button or touch input) that allows the user to acknowledge that they have taken their medication. Once confirmation is received, the pillbox sends the acknowledgment to the app, ensuring the wearable device does not continue escalating. If no confirmation is received, the system proceeds with wearable activation, maintaining redundancy in reminders.


We are working with Professor Steven Walter Hill, Gaurav Nigam ,Venkat Eswara Tummala and Brian Mehdian.

Environmental Sensing for Firefighters

Andri Teneqexhi, Lauren White, Hyun Yi

Environmental Sensing for Firefighters

Featured Project

Hyun Yi, Lauren White, and Andri Teneqexhi earned the Instructor's Award in the Fall of 2013 for their work on the Environmental Sensing for Firefighters.

"Engineering is all about solving real life problems and using the solutions to improve the lives of others. ECE 445 allows you to actually delve deeper into what this really means by providing students the chance to undergo the engineering design process. This requires taking all of the theoretical knowledge, lab experiences, and ultimately, everything that you have ever learned in life, and applying it to your project. Though, there is structure to the course and deadlines in place to measure your team's progress, the actual design, implementation, and success of your project is all determined by you. Unlike any other course that I have taken, I've gained an appreciation for the utilization and benefits of external resources, unforeseen scheduling delays, delegating tasks, and most importantly, teamwork. I consider ECE 445 to be a crash course into real life engineering and a guide to become a successful engineer." -- Lauren White