Project

# Title Team Members TA Documents Sponsor
28 Modular Screen
Dale Morrison
Sean Halperin
Yuzhe He
# Team Members:
- Morrison, Dale Joseph Jr (dalejm2)
- He Yuzhe (yuzhehe2)
- Sean Halperin (seanmh3)

# Problem
Many applications (tabletop gaming groups, educators, researchers, presenters, and event organizers) require large, flexible, and reconfigurable display systems; however, existing solutions are expensive, bulky, non-modular, and difficult to customize. Users who want visual content often lack an affordable system that can be easily resized, repositioned, and updated with new content. For example, one can consider the tabletop groups that may spend close to $1000 on TV-table setups, which does not include a reconfigurable display, making immersion exceedingly difficult for these groups. This shows the need for a screen that is both customizable, modular, and affordable.
# Solution
The solution proposed is a modular digital display composed of multiple interlocking screen tiles that connect to form a larger display. Each tile contains a display and communicates with neighboring tiles through magnetic interconnects. A power or control tile will distribute power, detect the layout of the tiles, and set the visual display of each tile. The system to start will support static images and user-uploaded images. Something like this could be used in a classroom, team meetings, digital canvases, and tabletop gaming. The core idea is as described, but there are many advanced features such as audio and animation that will be implemented if time allows.
# Solution Components
## Subsystem 1, Tile Display Module (Per Tile)
This subsystem allows each tile to render its assigned portion of the full image.
The display tiles form the user experience; therefore, without high-quality visual output, the modular board would fail to justify the replacement of paper or screens. To keep immersion, the overall board needs to be seamless instead of fragmented. As such, each tile must render its assigned portion in full detail.
Each tile will contain a screen, display driver, and electrical connectors that will receive power and image data from the control tile. The tiles will have a MCU for image processing. The tile will be enclosed in a block housing, which does not separate any screens from each other and maintains alignment.
Components:
- Display : 6 inch LCD or TFT screen - CreateXplay 6.0 inch TFT Screen Module 1080*2160
- Display Controller Board : HDMI or LVDS
- Edge connectors : Magnetic Pogo Pin Connector, 12V 1A Pogopin Male Female 2.5 MM Spring Loaded Connectors
- Housing for the Screen
- Microcontroller Unit (MCU) : ESP32-C3-WROOM-02
## Subsystem 2, Tile Interconnect and Layout Detection
The key innovation of this project is modularity. Therefore, the board must work regardless of how the user arranges the tiles. This subsystem will provide that capability, allowing users to rearrange tiles freely while ensuring the correct image appears in the correct location. Each tile will include edge contacts that detect when it is connected to a neighboring tile. The power tile will scan the connections and build a grid of the size of the board. Based on the tile's position data, the power tile will assign a location of the grid the tile is on and determine the part of the image the tile should display (rerunning automatically as tiles are moved).
Implemention:
- Connection Detection
- Layout mapping algorithm on the MCU
- Coordinate assignments

## Subsystem 3, Power or Control Tile
This subsystem will serve as the control center of the board and will be responsible for ensuring all tiles receive power and image data.
The control tile will have one or two MCUs. One MCU manages system logic (layout detection, scene selection, etc), while the second handles display data. The controller will store images locally (microSD or USB), slice them into tile segments, and transmit the correct image data to each tile. It will also broadcast synchronization signals to ensure all tiles update at the same time. This tile will also include power regulation, ensuring that all connected tiles receive stable voltage and current.
Components:
- Microcontroller Unit (MCU) : ESP32-C3-WROOM-02
- microSD or flash storage
- Power distribution board with protection NCV97200
-Power On Button: PTS645SL43-2 LFS

## Subsystem 4, User Interface and Scene Control
Without an intuitive interface, changing the screen would be difficult, which would reduce usability. This subsystem ensures that the board is able to be used in all different kinds of scenarios.
Basic user controls will be integrated directly into the control tile. For advanced control, the system will provide a Wi-Fi-based web application hosted on the control tile. Users can connect from a phone or laptop to upload images, select scenes, and upload them to the board. If app development proves too complex within the semester, the board will support switching between multiple preloaded scenes as a fallback.
Components:
- Scroll Knob: A scroll wheel which will allow the switching of images if app development is too complex

# Criterion For Success
- The system supports 4 to 9 tiles.
- Pressing the power button powers the system and all connected tiles.
- The power or control tile automatically detects the board layout.
- Each tile displays the correct portion of the full image.
- The board displays at least two selectable scenes.
- Scene transitions occur without visible misalignment.
- The system remains stable under repeated reconfiguration.
- Displaying numbers of it's relative location

BusPlan

Aashish Kapur, Connor Lake, Scott Liu

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.