Project

# Title Team Members TA Documents Sponsor
42 Autonomous Cold Salad Bar
Siddhaarta Venkatesh
Tejas Alagiri Kannan
proposal1.jpeg
# **Team:**

1. Tejas Alagiri Kannan(tejasa4)
2. Siddhaarta Venkatesh(sv39)

# **Problem:**
In the food industry, a huge number of processes are extremely rote and utilize manpower on monotonic tasks that can be replaced by an autonomous system. One such problem is the usage of manpower in assembly line format restaurants(eg, Chipotle, Forage Kitchen, Qdoba, etc.). Just as in the automation industry, where the assembly line is, in essence, replaced by 6-DoF arms and robot operators, I believe the manpower in restaurants can also be replaced by a robotic system that can provide higher efficiency. We have already seen a large number of processes getting automated in the restaurant industry, such as the automated food bar in sushi restaurants and robotic servers(not widely adapted unfortunately).

# **Solution:**
At the outset, I would like to mention that the solution does not aim to automate the entire pipeline from creating the dish to serving it. To perform highly technical dishes is a different problem in itself. I aim to make the serving process more efficient and reduce wait time. Given the ingredients, such as, chopped chicken, chopped onions, sauces, etc(which i believe is a fair starting point)

Each ingredient will have its own pipe that dispenses one specific type of dish. Once we receive instructions of what food needs to be prepared and the x # of ingredients it needs to dispense and in which order, the bowl on a conveyor belt will move back and forth to fill up with those ingredients. These ingredients are funneled from their own pipes that dispenses the ingredients, one at a time. The final box is then sealed and placed in a shaker which mixes the ingredients and it is served at the end.

# **COMPONENTS:**

# **Subsystem 1: Motion**
The bowl must be moved around the pipes to get filled. This is what we propose:

Conveyor belt: 4 idlers, 2 head pulleys, 1 NEMA 23 motor(or other), 1 gear reducer, 1 motor driver(TB6600)

1 Food storage basket, 5 individual dispensary pipes, 5 servo motors, 1 servo motor PWM controller

The dispensary pipes will be pumping out food using a servo pump filler mechanism where the servo motor will push down on the contents of the pump(in a piston like motion) and squeeze out the food). We will use the ESP32 Microcontroller series

# **Subsystem 2: User Interface**
For initial testing, simple buttons to determine which dish is chosen. The final device will involve a screen, natural interface. The simple buttons will just be regular tactile buttons. and the final screen would be an ST7789 LCD display that will show the user what food has been ordered. It will show the user what options they have chosen for their salad and how to add/remove particular items with a button press

# **Subsystem 3: Food presentation**
We expect to have the final salad, well tossed and provided to the user. So once the bowl is filled which is determined by it passing through the pipes of all its ingredients, the user will close it with a cap. the user will have the choice to have it shaked or not. That feature is an additional button after the food is dispensed. The bowl is then placed in a closed contrapment which simply rotates at high speeds to mix the food. It is a very similar design to regular boba shakers.
Shaker: 1 NEMA 23 motor, 1 gear box, 1 motor driver(TB6600)

# **Subsystem 4: Accuracy checking**
A major part of this project is to ensure efficiency. So we will incorporate a weight sensor(mini load cell), this weight sensor will track the weight of the bowl as items are being dispensed and will serve as a checker to stop the machine from over dispensing.

# **Subsystem 5: Power system**
For demonstration purposes the machine will be hooked up to a benchtop powersupply or another reliable form of powersupply similar to a benchtop like a low-grade DC power supply.

Another main component that we will add is food safe tubing to ensure that the food does not get contaminated

# **Criterions for success:**
1. The conveyor belt is able to move consistently in a way that the bowl is under the right dispenser.
2. Each dispenser is able to dispense food. This would be for both solid and liquid food, such as sauces.
3. Each dispenser is able to dispense the right amount of food or a range of food in a set range.
4. Initial prototype can, on button press, determine exact motor angles to move the components for early demo during semester
5. Final prototype can, on user request, send a signal to the microprocessor to move bowl and dispense mock food into a bowl.

# **Team work requirements:**

1. CAD every individual component in a miniature form to depict the real system (1 week)
2. Use Dev board with motor drivers to demonstrate bread board working of Criterion 1 of success. (1 week)
3. Attach devboard solution to CAD physical model to take into account motor backlash and other physical constraints like power supply issues and overheating ( 1 week)
4. Start PCB design based on the chosen direction. Soldering and debugging (3-4 weeks)
5. Final assembly and testing( 1 week)
This gives us maybe 1 week of extra leeway for any hindrances.

Resonant Cavity Field Profiler

Salaj Ganesh, Max Goin, Furkan Yazici

Resonant Cavity Field Profiler

Featured Project

# Team Members:

- Max Goin (jgoin2)

- Furkan Yazici (fyazici2)

- Salaj Ganesh (salajg2)

# Problem

We are interested in completing the project proposal submitted by Starfire for designing a device to tune Resonant Cavity Particle Accelerators. We are working with Tom Houlahan, the engineer responsible for the project, and have met with him to discuss the project already.

Resonant Cavity Particle Accelerators require fine control and characterization of their electric field to function correctly. This can be accomplished by pulling a metal bead through the cavities displacing empty volume occupied by the field, resulting in measurable changes to its operation. This is typically done manually, which is very time-consuming (can take up to 2 days).

# Solution

We intend on massively speeding up this process by designing an apparatus to automate the process using a microcontroller and stepper motor driver. This device will move the bead through all 4 cavities of the accelerator while simultaneously making measurements to estimate the current field conditions in response to the bead. This will help technicians properly tune the cavities to obtain optimum performance.

# Solution Components

## MCU:

STM32Fxxx (depending on availability)

Supplies drive signals to a stepper motor to step the metal bead through the 4 quadrants of the RF cavity. Controls a front panel to indicate the current state of the system. Communicates to an external computer to allow the user to set operating conditions and to log position and field intensity data for further analysis.

An MCU with a decent onboard ADC and DAC would be preferred to keep design complexity minimum. Otherwise, high MIPS performance isn’t critical.

## Frequency-Lock Circuitry:

Maintains a drive frequency that is equal to the resonant frequency. A series of op-amps will filter and form a control loop from output signals from the RF front end before sampling by the ADCs. 2 Op-Amps will be required for this task with no specific performance requirements.

## AC/DC Conversion & Regulation:

Takes an AC voltage(120V, 60Hz) from the wall and supplies a stable DC voltage to power MCU and motor driver. Ripple output must meet minimum specifications as stated in the selected MCU datasheet.

## Stepper Drive:

IC to control a stepper motor. There are many options available, for example, a Trinamic TMC2100. Any stepper driver with a decent resolution will work just fine. The stepper motor will not experience large loading, so the part choice can be very flexible.

## ADC/DAC:

Samples feedback signals from the RF front end and outputs the digital signal to MCU. This component may also be built into the MCU.

## Front Panel Indicator:

Displays the system's current state, most likely a couple of LEDs indicating progress/completion of tuning.

## USB Interface:

Establishes communication between the MCU and computer. This component may also be built into the MCU.

## Software:

Logs the data gathered by the MCU for future use over the USB connection. The position of the metal ball and phase shift will be recorded for analysis.

## Test Bed:

We will have a small (~ 1 foot) proof of concept accelerator for the purposes of testing. It will be supplied by Starfire with the required hardware for testing. This can be left in the lab for us to use as needed. The final demonstration will be with a full-size accelerator.

# Criterion For Success:

- Demonstrate successful field characterization within the resonant cavities on a full-sized accelerator.

- Data will be logged on a PC for later use.

- Characterization completion will be faster than current methods.

- The device would not need any input from an operator until completion.

Project Videos