Project

# Title Team Members TA Documents Sponsor
13 Wearable device for Amusement Parks
Cherian Cherian
Pooja Kankani
Rohan Khanna
Johan Mufuta design_document1.pdf
design_document2.pdf
design_document3.pdf
design_document4.pdf
final_paper2.pdf
final_paper3.pdf
final_paper4.pdf
other1.pdf
other2.pdf
proposal1.pdf
AMUSEMENT PARK WEARABLE DEVICE

Problem:

Currently amusement parks have very inefficient systems where people end up spending most of their time waiting in lines. Further, it is easy for children to get lost and there is no easy way of finding them. Also since amusement parks are crowded, it’s annoying to carry things like wallets, locker keys etc around with you all the time and it's very likely that you may lose them.

Solution Overview:

Create a wearable device which can be used for various functions such as payments, lockers, food etc. The wearable also contains a gps tracking system which will be valuable for parents trying to find children in large amusement parks. The parents can add a distance parameter on the wearable that alerts them when their child or loved one is greater than a certain distance away from them. An LCD screen can be used as a display for information such as wait times, money remaining, and location of people.

Optional Feature (Based on time ): Ability to call or send messages to each other. Many times in amusement parks, friends tend to get away from each other and it's annoying to carry your phone around, if the wearable gave you the option to send messages, make calls or use as a walkie talkie then it would be easy to stay in touch with each other in the large parks.

Solution Components

Hardware Components:

Microcontroller currently preferred : AdaFruit Flora
Possible candidates based on cost and compatibility with other modules ( such as wifi etc ) :
AdaFruit Gamma
LilyPad Arduino
TinyLily Mini
StitchKit

AdaFruit Flora is an arduino compatible microcontroller that is commonly used for wearable devices. It has an inbuilt gps functionality and hence is our preferred choice currently. It also is a very low power microcontroller which is essential for a wearable device.

GPS module:
AdaFruit Flora comes with a GPS module attached to it so we plan on using that for the GPS
Neo gps 6M is compatible with the lilypad arduino.
For the GPS, we will have a different parent and child watch. So, the parent watches are always tracking their own location as well as all the child watches. If the distance between the parent watch and any child watch linked to it is greater than a certain amount, we will send out an alert.

RFID Components:
RFID Tag :
RFID Transmitter (CTRA1816F)

This will include the RFID transmitter connected to the microcontroller above and attached to the watch. This will be used for payments, unlocking lockers, etc

RFID Reader :
RFID reader (RC522)

This will consist of a RFID reader (RC522) connected to an Arduino. This will be used to mimic the devices in amusement used for payments and unlocking devices etc.

LCD display on watch:
This display acts as the interface to see wait times, get alerts on when to go to a particular attraction and track your friends and family.


______________________________________________________________________________________
Optional Components if time Permits

*if there is time to enable the walkie talkie feature the messages will be read through the lcd screen

*WiFi module:

A WiFi module connected to the microcontroller to send and receive data to mobile app for saving user profiles, locking, unlocking, adding chores, etc.
*Optional - Could be used for WIFI calling as well if time permits
A compatible wifi module with AdaFruit Flora: ESP32 WiFi-BT-BLE MCU Module / ESP-WROOM-32 (https://www.adafruit.com/product/3320)
A compatible wifi module with lilypad arduino : ESP8266 Esp-12E wifi module

*Optional Walkie Talkie Module if time permits:
SA818 Walkie talkie module with RDA1846S chip
Has a 5km range which can be used for communication since people usually do not like carrying around their phones in amusement parks, especially water parks. Plus in most rides they ask you to remove their phones. And in water parks people don't carry their phones.

*Software Components:
A mobile application that allows the initial set up for being able to use the wearable device inside the theme park. At the start, the user can enter their credit card info in the app and load a certain amount of credits from their credit card into the application. That amount of money will get stored in the wearable device for the user to use, and will be decremented as the user pays, using a local counter on the wearable.
In the end, the app will show an entire summary of the user’s trip: rides done, wait times experienced, bills for food and merchandise purchased. Also, all the images clicked of the user inside the theme park will be available for the user to see on the application.
______________________________________________________________________________________

Criterion for Success
Locate people wearing the band precisely and display that location on the wearable accurately using GPS.
Wearable properly interacts with the RFID readers for various purposes and the LCD screen displays the appropriate messages.
Software application safely allows credit card payments for loading credits.
The WiFi module can accurately transfer information from the mobile app to the watch and vice versa, for example, loaded credits, photos etc.

Instant Nitro Cold Brew Machine

Danis Heto, Mihir Vardhan

Instant Nitro Cold Brew Machine

Featured Project

# Instant Nitro Cold Brew Machine

Team Members:

- Mihir Vardhan (mihirv2)

- Danis Heto (dheto3)

# Problem

Cold brew is made by steeping coffee grounds in cold water for 12-18 hours. This low-temperature steeping extracts fewer bitter compounds than traditional hot brewing, leading to a more balanced and sweeter flavor. While cold brew can be prepared in big batches ahead of time and stored for consumption throughout the week, this would make it impossible for someone to choose the specific coffee beans they desire for that very morning. The proposed machine will be able to brew coffee in cold water in minutes by leveraging air pressure. The machine will also bring the fine-tuning and control of brewing parameters currently seen in hot brewing to cold brewing.

# Solution

The brew will take place in an airtight aluminum chamber with a removable lid. The user can drop a tea-bag like pouch of coffee grounds into the chamber along with cold water. By pulling a vacuum in this chamber, the boiling point of water will reach room temperature and allow the coffee extraction to happen at the same rate as hot brewing, but at room temperature. Next, instead of bringing the chamber pressure back to atmospheric with ambient air, nitrogen can be introduced from an attached tank, allowing the gas to dissolve in the coffee rapidly. The introduction of nitrogen will prevent the coffee from oxidizing, and allow it to remain fresh indefinitely. When the user is ready to dispense, the nitrogen pressure will be raised to 30 PSI and the instant nitro cold brew can now be poured from a spout at the bottom of the chamber.

The coffee bag prevents the coffee grounds from making it into the drink and allows the user to remove and replace it with a bag full of different grounds for the next round of brewing, just like a Keurig for hot coffee.

To keep this project feasible and achievable in one semester, the nitrogenation process is a reach goal that we will only implement if time allows. Since the vacuum and nitrogenation phases are independent, they can both take place through the same port in the brewing chamber. The only hardware change would be an extra solenoid control MOSFET on the PCB.

We have spoken to Gregg in the machine shop and he believes this vacuum chamber design is feasible.

# Solution Components

## Brewing Chamber

A roughly 160mm tall and 170mm wide aluminum chamber with 7mm thick walls. This chamber will contain the brew water and coffee grounds and will reach the user-set vacuum level and nitrogenation pressure if time allows. There will be a manually operated ball valve spout at the bottom of this chamber to dispense the cold brew once it is ready. The fittings for the vacuum hose and pressure sensor will be attached to the screw top lid of this chamber, allowing the chamber to be removed to add the water and coffee grounds. This also allows the chamber to be cleaned thoroughly.

## Temperature and Pressure Sensors

A pressure sensor will be threaded into the lid of the brewing chamber. Monitoring the readings from this pressure sensor will allow us to turn off the vacuum pump once the chamber reaches the user-set vacuum level. A temperature thermocouple will be attached to the side of the brewing chamber. The temperature measured will be displayed on the LCD display. This thermocouple will be attached using removable JST connectors so that the chamber can be removed entirely from the machine for cleaning.

## Vacuum Pump and Solenoid Valve

An oilless vacuum pump will be used to pull the vacuum in the brewing chamber. A solenoid valve will close off the connection to this vacuum pump once the user-set vacuum pressure is reached and the pump is turned off. To stay within the $100 budget for this project, we have been given a 2-Stage 50L/m Oil Free Lab Vacuum Pump on loan for this semester. The pump will connect to the chamber through standard PTFE tubing and push-fit connectors

If time allows and we are able to borrow a nitrogen tank, an additional solenoid and a PTFE Y-connector would allow the nitrogen tank to connect to the vacuum chamber through the same port as the vacuum pump.

## LCD Display and Rotary Encoder

The LCD display allows the user to interact with the temperature and pressure components of the brewing chamber. This display will be controlled using a rotary encoder with a push button. The menu style interface will allow you to control the vacuum level and brew time in the chamber, along with the nitrogenation pressure if time allows. The display will also monitor the temperature of the chamber and display it along with the time remaining and the current vacuum level.

# Criterion For Success

- A successful cold brew machine would be able to make cold brew coffee at or below room temperature in ten minutes at most.

- The machine must also allow the user to manually control the brew time and vacuum level as well as display the brew temperature.

- The machine must detect and report faults. If it is unable to reach the desired vacuum pressure or is inexplicably losing pressure, the machine must enter a safe ‘stop state’ and display a human readable error code.

- The reach goal for this project, not a criterion for success, would be the successful nitrogenation of the cold brew.

Project Videos