Design Document

Description

The design document communicates the complete and detailed design of your project. It is substantially more detailed than the proposal and prepares you for the assembly phase of the semester. A quality design document is the key to a successful project (sample document). Use the following format:

  1. Introduction

    • Problem and Solution:

      One to two paragraphs explaining the context of the problem to be solved by your project, including any relevant references to justify the existence and/or importance of the problem (i.e., the need or want for a solution). Justify the novelty of your solution or explain the expected improvements of your solution over previous results.

    • Visual Aid

      A pictorial representation of your project that puts your solution in context. Not necessarily restricted to your design. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.

    • High-level requirements list:

      A list of three to four objective characteristics that this project must exhibit in order to solve the problem. These should be selected such that if any of these requirements were not met, the project would fail to solve the problem. Avoid vague requirements that can be interpreted a number of ways (e.g. "The radio subsystem should work reliably."). Each high-level requirement must be stated in complete sentences and displayed as a bulleted list.

  2. Design

    • Block Diagram:

      A general block diagram of the design of your solution. Each block should be as modular as possible and represent a subsystem of your design. In other words, they can be implemented independently and re-assembled later. The block diagram should be accompanied by a brief (1 paragraph) description of the critical subsystems and what they do.

    • Physical Design (if applicable):

      A physical diagram of the project indicating things such as mechanical dimensions or placement of sensors and actuators. The physical diagram should also be accompanied by a brief one paragraph description.

    • [Subsystem X]

      For each subsystem in your block diagram, you should include a highly detailed and quantitative block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any and all design decisions must be clearly justified. Any interfaces with other blocks must be defined clearly and quantitatively.

      Include any relevant supporting figures and data in order to clearly illustrate and justify the design. Typically a well justified block design will include some or all of the following items: Circuit schematics, simulations, calculations, measurements, flow charts, mechanical diagrams (e.g. CAD drawings, only necessary for mechanical components).

      You must include a Requirements and Verifications table. Please see the R&V page for guidance on writing requirements and verification procedures.

    • [Subsystem Y]

      ...

    • [Subsystem Z]

      ...

    • Tolerance Analysis: Through discussions with your TA, identify the block or interface critical to the success of your project that poses the most challenging requirement. Analyze it mathematically and show that it can be feasibly implemented and meet its requirements. See the Tolerance Analysis guide for further guidance.
  3. Cost and Schedule

    1. Cost Analysis: Include a cost analysis of the project by following the outline below. Include a list of any non-standard parts, lab equipment, shop services, etc., which will be needed with an estimated cost for each.
      • Labor: (For each partner in the project)
        Assume a reasonable salary
        ($/hour) x 2.5 x hours to complete = TOTAL
        Then total labor for all partners. It's a good idea to do some research into what a graduate from ECE at Illinois might typically make.
      • Parts: Include a table listing all parts (description, manufacturer, part #, quantity and cost) and quoted machine shop labor hours that will be needed to complete the project.
      • Sum of costs into a grand total
    2. Schedule:

      Include a time-table showing when each step in the expected sequence of design and construction work will be completed (general, by week), and how the tasks will be shared between the team members. (i.e. Select architecture, Design this, Design that, Buy parts, Assemble this, Assemble that, Prepare mock-up, Integrate prototype, Refine prototype, Test integrated system).

  4. Discussion of Ethics and Safety:

    1. Expand upon the ethical and safety issues raised in your proposal to ensure they are comprehensive. Add any ethical and safety concerns that arose since your proposal.
    2. Document procedures to mitigate the safety concerns of your project. For example, include a lab safety document for batteries, human/animal interfaces, aerial devices, high-power, chemicals, etc. Justify that your design decisions sufficiently protect both users and developers from unsafe conditions caused by your project.
      Projects dealing with flying vehicles, high voltage, or other high risk factors, will be required to produce a Safety Manual and demonstrate compliance with the safety manual at the time of demo.
  5. Citations:

    Any material obtained from websites, books, journal articles, or other sources not originally generated by the project team must be appropriately attributed with properly cited sources in a standardized style such as IEEE, ACM, APA, or MLA.

Submission and Deadlines

Your design review document should be uploaded to PACE in PDF format by the deadline shown on the course calendar . If you have uploaded a mock DR document to PACE, please make sure that it has been removed before DR.

UV Sensor and Alert System - Skin Protection

Liz Boehning, Gavin Chan, Jimmy Huh

UV Sensor and Alert System - Skin Protection

Featured Project

Team Members:

- Elizabeth Boehning (elb5)

- Gavin Chan (gavintc2)

- Jimmy Huh (yeaho2)

# Problem

Too much sun exposure can lead to sunburn and an increased risk of skin cancer. Without active and mindful monitoring, it can be difficult to tell how much sun exposure one is getting and when one needs to seek protection from the sun, such as applying sunscreen or getting into shady areas. This is even more of an issue for those with fair skin, but also can be applicable to prevent skin damage for everyone, specifically for those who spend a lot of time outside for work (construction) or leisure activities (runners, outdoor athletes).

# Solution

Our solution is to create a wristband that tracks UV exposure and alerts the user to reapply sunscreen or seek shade to prevent skin damage. By creating a device that tracks intensity and exposure to harmful UV light from the sun, the user can limit their time in the sun (especially during periods of increased UV exposure) and apply sunscreen or seek shade when necessary, without the need of manually tracking how long the user is exposed to sunlight. By doing so, the short-term risk of sunburn and long-term risk of skin cancer is decreased.

The sensors/wristbands that we have seen only provide feedback in the sense of color changing once a certain exposure limit has been reached. For our device, we would like to also input user feedback to actively alert the user repeatedly to ensure safe extended sun exposure.

# Solution Components

## Subsystem 1 - Sensor Interface

This subsystem contains the UV sensors. There are two types of UV wavelengths that are damaging to human skin and reach the surface of Earth: UV-A and UV-B. Therefore, this subsystem will contain two sensors to measure each of those wavelengths and output a voltage for the MCU subsystem to interpret as energy intensity. The following sensors will be used:

- GUVA-T21GH - https://www.digikey.com/en/products/detail/genicom-co-ltd/GUVA-T21GH/10474931

- GUVB-T21GH - https://www.digikey.com/en/products/detail/genicom-co-ltd/GUVB-T21GH/10474933

## Subsystem 2 - MCU

This subsystem will include a microcontroller for controlling the device. It will take input from the sensor interface, interpret the input as energy intensity, and track how long the sensor is exposed to UV. When applicable, the MCU will output signals to the User Interface subsystem to notify the user to take action for sun exposure and will input signals from the User Interface subsystem if the user has put on sunscreen.

## Subsystem 3 - Power

This subsystem will provide power to the system through a rechargeable, lithium-ion battery, and a switching boost converter for the rest of the system. This section will require some consultation to ensure the best choice is made for our device.

## Subsystem 4 - User Interface

This subsystem will provide feedback to the user and accept feedback from the user. Once the user has been exposed to significant UV light, this subsystem will use a vibration motor to vibrate and notify the user to put on more sunscreen or get into the shade. Once they have done so, they can press a button to notify the system that they have put on more sunscreen, which will be sent as an output to the MCU subsystem.

We are looking into using one of the following vibration motors:

- TEK002 - https://www.digikey.com/en/products/detail/sparkfun-electronics/DEV-11008/5768371

- DEV-11008 - https://www.digikey.com/en/products/detail/pimoroni-ltd/TEK002/7933302

# Criterion For Success

- Last at least 16 hours on battery power

- Accurately measures amount of time and intensity of harmful UV light

- Notifies user of sustained UV exposure (vibration motor) and resets exposure timer if more sunscreen is applied (button is pressed)