Hardware

Hardware Resources

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. See below for more details, and check out the links above.

Development Boards

Intel Galileo Development Boards

The lab has 25 Intel Galileo Development Boards available for checkout. The following links are useful resources for working with these boards:

Microcontrollers

PIC Microcontrollers

The lab has a number of PIC16F877A microcontrollers available for use in projects. It is understandable that wiring errors might happen, so each student is allowed to burn out a maximum of two PICs. They are programmed in a simplified C instruction set and are used to simplify design and perform IO with ease. Check the PIC Tutorial for more information.

BASIC Stamp Microcontrollers

The BASIC Stamp is a simple, tiny microcontroller with serial communications abilities, programmed in BASIC. This makes it ideal for simple applications where I/O speed is not critical, and the complexity of the HC12 is not needed.

DSPs

TI TMS320C54x DSPs

We have several C54x DSPs available for checkout (if demand is high, sharing a DSP with another group may be needed). Check out these resources for more information:

TI TMS320C6713 DSP

We have one TMS320C6713 (16 Mb) Floating Point DSP that was graciously donated by TI. The board is in the TA cabinet and is available for checkout.

LINX RF modules

We have a number of LINX transmitters and receivers available in the lab for RF projects, with a choice of the LC Series (315 or 418 MHz) or the HP series (902-928 MHz band).

GPS kits

We have 2-3 Garmin 12 XL GPS receivers. The Garmin units are equipped with a serial communication port and can be interfaced with microcontrollers or computers to provide information on position (lat, long, altitude, time) and velocity (differentiation of position). We also have one equivalent Motorola kit, and another kit by Ashtech (Eval and development kit, 990285). There are antennas on the roof of EL with wires into the lab so that data can be acquired while in the building (for testing purposes). The antennas can be accessed through connectors in the back left corner of the lab, by the far computer.

Assistive Chessboard

Robert Kaufman, Rushi Patel, William Sun

Assistive Chessboard

Featured Project

Problem: It can be difficult for a new player to learn chess, especially if they have no one to play with. They would have to resort to online guides which can be distracting when playing with a real board. If they have no one to play with, they would again have to resort to online games which just don't have the same feel as real boards.

Proposal: We plan to create an assistive chess board. The board will have the following features:

-The board will be able to suggest a move by lighting up the square of the move-to space and square under the piece to move.

-The board will light up valid moves when a piece is picked up and flash the placed square if it is invalid.

-We will include a chess clock for timed play with stop buttons for players to signal the end of their turn.

-The player(s) will be able to select different standard time set-ups and preferences for the help displayed by the board.

Implementation Details: The board lights will be an RGB LED under each square of the board. Each chess piece will have a magnetic base which can be detected by a magnetic field sensor under each square. Each piece will have a different strength magnet inside it to ID which piece is what (ie. 6 different magnet sizes for the 6 different types of pieces). Black and white pieces will be distinguished by the polarity of the magnets. The strength and polarity will be read by the same magnetic field sensor under each square. The lights will have different colors for the different piece that it is representing as well as for different signals (ie. An invalid move will flash red).

The chess clock will consist of a 7-segment display in the form of (h:mm:ss) and there will be 2 stop buttons, one for each side, to signal when a player’s turn is over. A third button will be featured near the clock to act as a reset button. The combination of the two stop switches and reset button will be used to select the time mode for the clock. Each side of the board will also have a two toggle-able buttons or switches to control whether move help or suggested moves should be enabled on that side of the board. The state of the decision will be shown by a lit or unlit LED light near the relevant switch.

Project Videos