Hardware

Hardware Resources

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. See below for more details, and check out the links above.

Development Boards

Intel Galileo Development Boards

The lab has 25 Intel Galileo Development Boards available for checkout. The following links are useful resources for working with these boards:

Microcontrollers

PIC Microcontrollers

The lab has a number of PIC16F877A microcontrollers available for use in projects. It is understandable that wiring errors might happen, so each student is allowed to burn out a maximum of two PICs. They are programmed in a simplified C instruction set and are used to simplify design and perform IO with ease. Check the PIC Tutorial for more information.

BASIC Stamp Microcontrollers

The BASIC Stamp is a simple, tiny microcontroller with serial communications abilities, programmed in BASIC. This makes it ideal for simple applications where I/O speed is not critical, and the complexity of the HC12 is not needed.

DSPs

TI TMS320C54x DSPs

We have several C54x DSPs available for checkout (if demand is high, sharing a DSP with another group may be needed). Check out these resources for more information:

TI TMS320C6713 DSP

We have one TMS320C6713 (16 Mb) Floating Point DSP that was graciously donated by TI. The board is in the TA cabinet and is available for checkout.

LINX RF modules

We have a number of LINX transmitters and receivers available in the lab for RF projects, with a choice of the LC Series (315 or 418 MHz) or the HP series (902-928 MHz band).

GPS kits

We have 2-3 Garmin 12 XL GPS receivers. The Garmin units are equipped with a serial communication port and can be interfaced with microcontrollers or computers to provide information on position (lat, long, altitude, time) and velocity (differentiation of position). We also have one equivalent Motorola kit, and another kit by Ashtech (Eval and development kit, 990285). There are antennas on the roof of EL with wires into the lab so that data can be acquired while in the building (for testing purposes). The antennas can be accessed through connectors in the back left corner of the lab, by the far computer.

Monitor for Dough and Sourdough Starter

Jake Hayes, Abhitya Krishnaraj, Alec Thompson

Monitor for Dough and Sourdough Starter

Featured Project

Team Members:

- Jake Hayes (jhayes)

- Abhitya Krishnaraj (abhitya2)

- Alec Thompson (alect3)

# Problem

Making bread at home, especially sourdough, has become very popular because it is an affordable way to get fresh-baked bread that's free of preservatives and other ingredients that many people are not comfortable with. Sourdough also has other health benefits such as a lower glycemic index and greater bioavailability of nutrients.

However, the bulk fermentation process (letting the dough rise) can be tricky and requires a lot of attention, which leads to many people giving up on making sourdough. Ideally, the dough should be kept at around 80 degrees F, which is warmer than most people keep their homes, so many people try to find a warm place in their home such as in an oven with a light on; but it's hard to know if the dough is kept at a good temperature. Other steps need to be taken when the dough has risen enough, but rise time varies greatly, so you can't just set a timer; and if you wait too long the dough can start to shrink again. In the case of activating dehydrated sourdough starter, this rise and fall is normal and must happen several times; and its peak volume is what tells you when it's ready to use.

# Solution

Our solution is to design a device with a distance sensor (probably ultrasonic) and a temperature sensor that can be attached to the underside of most types of lids, probably with magnets. The sensors would be controlled with a microcontroller; and a display (probably LCD) would show the minimum, current, and maximum heights of the dough along with the temperature. This way the user can see at a glance how much the dough has risen, whether it has already peaked and started to shrink, and whether the temperature is acceptable or not. There is no need to remove it from its warm place and uncover it, introducing cold air; and there is no need to puncture it to measure its height or use some other awkward method.

The device would require a PCB, microcontroller, sensors, display, and maybe some type of wireless communication. Other features could be added, such as an audible alarm or a graph of dough height and/or temperature over time.

# Solution Components

## Height and Temperature Sensors

Sensors would be placed on the part of the device that attaches to the underside of a lid. A temperature sensor would measure the ambient temperature near the dough to ensure the dough is kept at an acceptable temperature. A proximity sensor or sensors would first measure the height of the container, then begin measuring the height of the dough periodically. If we can achieve acceptable accuracy with one distance sensor, that would be ideal; otherwise we could use 2-4 sensors.

Possible temperature sensor: [Texas Instruments LM61BIZ/LFT3](https://www.digikey.com/en/products/detail/texas-instruments/LM61BIZ%252FLFT3/12324753)

Proximity sensors could be ultrasonic, infrared LED, or VCSEL.\

Ultrasonic: [Adafruit ULTRASONIC SENSOR SONAR DISTANCE 3942](https://www.digikey.com/en/products/detail/adafruit-industries-llc/3942/9658069)\

IR LED: [Vishay VCNL3020-GS18](https://www.mouser.com/ProductDetail/Vishay-Semiconductors/VCNL3020-GS18?qs=5csRq1wdUj612SFHAvx1XQ%3D%3D)\

VCSEL: [Vishay VCNL36826S](https://www.mouser.com/ProductDetail/Vishay-Semiconductors/VCNL36826S?qs=d0WKAl%252BL4KbhexPI0ncp8A%3D%3D)

## MCU

An MCU reads data from the sensors and displays it in an easily understandable format on the LCD display. It also reads input from the user interface and adjusts the operation and/or output accordingly. For example, when the user presses the button to reset the minimum dough height, the MCU sends a signal to the proximity sensor to measure the distance, then the MCU reads the data, calculates the height, and makes the display show it as the minimum height.

Possible MCU: [STM32F303K8T6TR](https://www.mouser.com/ProductDetail/STMicroelectronics/STM32F303K8T6TR?qs=sPbYRqrBIVk%252Bs3Q4t9a02w%3D%3D)

## Digital Display

- A [4x16 Character LCD](https://newhavendisplay.com/4x16-character-lcd-stn-blue-display-with-white-side-backlight/) would attach to the top of the lid and display the lowest height, current height, maximum height, and temperature.

## User Interface

The UI would attach to the top of the lid and consist of a number of simple switches and push buttons to control the device. For example, a switch to turn the device on and off, a button to measure the height of the container, a button to reset the minimum dough height, etc.

Possible switch: [E-Switch RA1113112R](https://www.digikey.com/en/products/detail/e-switch/RA1113112R/3778055)\

Possible button: [CUI Devices TS02-66-50-BK-160-LCR-D](https://www.digikey.com/en/products/detail/cui-devices/TS02-66-50-BK-160-LCR-D/15634352)

## Power

- Rechargeable Lithium Ion battery capable of staying on for a few rounds of dough ([2000 mAh](https://www.microcenter.com/product/503621/Lithium_Ion_Battery_-_37v_2000mAh) or more) along with a USB charging port and the necessary circuitry to charge the battery. The two halves of the device (top and underside of lid) would probably be wired together to share power and send and receive data.

## (stretch goal) Wireless Notification System

- Push notifications to a user’s phone whenever the dough has peaked. This would likely be an add-on achieved with a Raspberry Pi Zero, Gotify, and Tailscale.

# Criterion For Success

- Charge the battery and operate on battery power for at least 10 hours, but ideally a few days for wider use cases and convenience.

- Accurately read (within a centimeter) and store distance values, convert distance to dough height, and display the minimum, maximum, and current height values on a display.

- Accurately read and report the temperature to the display.

- (stretch goal) Inform the user when the dough has peaked (visual, audio, or app based).

Project Videos