Project

# Title Team Members TA Documents Sponsor
10 Automated Video Capture Bird Feeder with Data Collection
Colten Brunner
John Golden
Kevin Li
Nikhil Arora design_document2.pdf
final_paper1.pdf
photo1.jpg
photo2.jpg
presentation1.pptx
proposal2.pdf
video
# Automated Video Capture Bird Feeder with Data Collection

Team Members:
Kevin Li (kli56)
Colten Brunner (cbrunner)
John Golden (jgolden4)

# Problem

Many nature enthusiasts enjoy watching birds outside of their windows with homemade or store bought feeders. This practice has been going on for many years, but until recently it has been impossible to see the birds feeding without being present. With modern day technology, it has become possible to mount cameras onto or adjacent to bird feeders in order to see birds feeding, but in the new era of information technology, there should be more to bird feeders than simple footage. We seek to add onto an automated video capture system by including data capture to analyze when peak feeding hours occur. This problem is one that occurs for common bird watchers and ornithologists alike. Whether it is knowing when to sit in front of your bird feeder or wanting to collect feeding data in specific areas, this is a problem that necessitates a solution.

# Solution
The solution we propose involves a bird feeder that has a camera to turn on when motion is detected. The idea is to have an ultrasonic transducer that would trigger a camera to record for a given set of time if motion is detected. In addition specific data points that would be beneficial to nature enthusiasts would be acquired and stored. These would include time intervals when birds arrive to identify peak bird times and would be stored along with the video footage on an sd card.

# Solution Components

## Subsystem 1 - Video Capture

This subsystem focuses on capturing video footage triggered by the ultrasonic transducer. Components include: An ultrasonic transducer to detect motion and alert the camera to start recording, a microcontroller for processing video data and triggering the camera system as well as transmitting bird tracking data, and a camera that will take videos of the birds feeding.

## Subsystem 2 - Data Collection

Data Collection will be important to the end user and so require a separate system to ingest the data and store it properly for later usage. This will require connections to other subsystems to check for example if the camera is turned on and will require a storage component in addition to a processing unit.

## Subsystem 3 - Power System

A power system is required to power the other subsystems and during testing this will be done through dc power supply with potentially additional voltage regulations. Ideally in the final project all subsystems would be powered by a battery pack.

## Subsystem 4 - Bird Feeder

The bird feeder subsystem is the physical enclosure that stores the bird seed as well as houses all the electronic components. This means that fire hazard concerns need to be taken into account as well as protective measures for the camera due to the outdoor location of the bird feeder. The camera also needs to be protected from the elements while still maintaining unimpeded motion capture.


# Criterion For Success

-Video footage of birds feeding is successfully captured and stored in specific time intervals.

-The motion detector is sensitive to birds and wildlife, minimizing unnecessary background "noise."

-A collection of the time intervals when the birds would arrive for feeding and have the peak times the birds are out.

-The bird feeder successfully distributes food into the “feeding area” until the reservoir is completely empty.

Recovery-Monitoring Knee Brace

Dong Hyun Lee, Jong Yoon Lee, Dennis Ryu

Featured Project

Problem:

Thanks to modern technology, it is easy to encounter a wide variety of wearable fitness devices such as Fitbit and Apple Watch in the market. Such devices are designed for average consumers who wish to track their lifestyle by counting steps or measuring heartbeats. However, it is rare to find a product for the actual patients who require both the real-time monitoring of a wearable device and the hard protection of a brace.

Personally, one of our teammates ruptured his front knee ACL and received reconstruction surgery a few years ago. After ACL surgery, it is common to wear a knee brace for about two to three months for protection from outside impacts, fast recovery, and restriction of movement. For a patient who is situated in rehabilitation after surgery, knee protection is an imperative recovery stage, but is often overlooked. One cannot deny that such a brace is also cumbersome to put on in the first place.

--------

Solution:

Our group aims to make a wearable device for people who require a knee brace by adding a health monitoring system onto an existing knee brace. The fundamental purpose is to protect the knee, but by adding a monitoring system we want to provide data and a platform for both doctor and patients so they can easily check the current status/progress of the injury.

---------

Audience:

1) Average person with leg problems

2) Athletes with leg injuries

3) Elderly people with discomforts

-----------

Equipment:

Temperature sensors : perhaps in the form of electrodes, they will be used to measure the temperature of the swelling of the knee, which will indicate if recovery is going smoothly.

Pressure sensors : they will be calibrated such that a certain threshold of force must be applied by the brace to the leg. A snug fit is required for the brace to fulfill its job.

EMG circuit : we plan on constructing an EMG circuit based on op-amps, resistors, and capacitors. This will be the circuit that is intended for doctors, as it will detect muscle movement.

Development board: our main board will transmit the data from each of the sensors to a mobile interface via. Bluetooth. The user will be notified when the pressure sensors are not tight enough. For our purposes, the battery on the development will suffice, and we will not need additional dry cells.

The data will be transmitted to a mobile system, where it would also remind the user to wear the brace if taken off. To make sure the brace has a secure enough fit, pressure sensors will be calibrated to determine accordingly. We want to emphasize the hardware circuits that will be supplemented onto the leg brace.

We want to emphasize on the hardware circuit portion this brace contains. We have tested the temperature and pressure resistors on a breadboard by soldering them to resistors, and confirmed they work as intended by checking with a multimeter.

Project Videos